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Abstract

Background: The radiotherapy domain imposes undesired risks of radiation exposure to normal tissues
surrounding the tumor. To address this issue, treatment planning systems are being developed to obtain
a perfect therapeutic method, as the organs surrounding prostate tumors are sensitive to high doses of
radiation.
Objective: This study compared the efficiencies of three-dimensional conformal radiotherapy (3DCRT)
and intensity-modulated radiation therapy (IMRT) techniques and calculated the radiation dose that
actually reaches specific organs in prostate cancer patients.
Methods: This cross-sectional study, from Najaf, Iraq, involved 25 prostate tumor patients who were
enrolled for treatment. They underwent computerized tomography (CT) scans, 3D-CRT using X-ray
beams, and IMRTs. 3DCRT enhanced protection ability. All doses applied to the organs at risk were
within the tolerance limits. An ethical pre-approval was obtained from the Institutional Review Board,
No. MEC-87.
Results: IMRT better protected most radiation-sensitive normal tissues, while other organs also require
shielding, depending on the patient’s status.
Conclusion: IMRT better protects most normal tissues, i.e., right and left femoral heads, and bladder,
while 3DCRT better safeguards other organs, such as the rectum, depending on the patient’s status.

Keywords: CT scans, intensity-modulated radiation therapy, organs at risk (OAR) dose, radiotherapy,
three-dimensional conformal radiotherapy.

In radiotherapy using an external photon beam, a
majority of treatments involve beams with uniform
intensities across the field. Wedges are often used to
adjust the beam intensity, trade off tissue contour
irregularities, and further achieve uniform dose
distributions, a process known as intensity
modulation.(1)

Intensity modulated radiation therapy (IMRT) is
a technique that uses radiation at a non-uniform
intensity. Such an ability allows doses with better
conformity to the planning target volume (PTV) and
avoids affecting the organs at risk (OAR). The
growing complexity of IMRT demands an efficient
and systematic quality assurance (QA) program
regarding precision treatment delivery machines and
treatment planning systems (TPSs).(2, 3) IMRT has been
applied for the treatment of prostate cancer for less
than a decade and is an evolving technology within
radiation oncology. Thus, it is being carefully evaluated
for conformity.(4, 5)
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IMRT provides lower toxicity and higher survival
rates during the treatment of a variety of diseases,
including prostate tumors. It also allows for the
distribution of doses with varying intensities to multiple
targets, allowing versatility in instantenously integrated
boosted treatments. IMRT is an inverse planning
technique, and finding an accurate dose delivery
solution is complex, resulting in non-uniform dose
distributions across targets. In contrast, the 3D-CRT
(forward-planning approach) employs a uniform beam
profile to generate homogeneous dose distributions
when prepared properly.(6)

The critical normal structures are tissue types that
could experience severe morbidity if irradiated, thereby
affecting treatment preparation and dose prescriptions.
Not all radiologically targeted tissues may, in theory,
be considered as an OAR. However, the designation
of normal tissues as OAR in clinical practice typically
depends on their radiosensitivity and the dosage to
which their total or fractional volume is exposed in
terms of the recommended dose.(7) The head and neck
region includes various intricately arranged organs vital
for fundamental physiological functions and is essential
for appearance, speech, and social interactions. While
accounting for ~4% of all cancers, these organs are
divided into two types: parallel and serial.(8, 9) In parallel
organs, all subunits are functionally homologous, and
the total organ output is the sum of the functional
outputs of each subunit. In serial organs, functional
damage to one subunit results in harm to the entire
organ.(10, 11)

During radiotherapy sessions, ionizing radiation
from a linear accelerator (LINAC) is directed at the
tumor or the area from which it has been excised.
Even though radiation is focused on a target area, the
adjacent organs are inevitably irradiated. Since several
techniques are used to direct these ionizing rays onto
the target (i.e., 3D-CRT and IMRT), it has become
necessary to study the one that concentrates the
maximum levels of radiation doses at the region of
interest while minimizing exposure to the adjacent
healthy tissues or organs, saving them from being
irradiated.(12)

This research aimed to determine which of the
two techniques, i.e., 3D-CRT or IMRT, achieved the
least radiation exposure to the OARs, such as the
femoral head, bladder, rectum, and pelvic area, in
prostate cancer patients. Such investigations in this
regard are unavailable within the current body of
knowledge, at least in Iraq, and specifically, prostate
cancer.

 

 

Calculating the optimal dose for a specific tumor
is more straightforward with 3D conformal
radiotherapy than with IMRT, as this technology
incorporates advanced planning and imaging. After
precise CT scanning, the tumor size (target volume)
was determined, and the organs at risk were identified.
After ascertaining the collimator direction, dose
calculation using the TPS employed a dose distribution
calculated based on the beam data for the LINAC
and patient anatomy (assessed using CT). Dose
calculation algorithms for a specific point were
calculated using Equation 2.(15)

D = MU×(cGy/MU)ref×CF…………………2
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Materials  and  methods

In this prospective study, 25 patients, 60–100 kg, 40–
90 years old, and diagnosed with prostate tumors from 
2020 to 2022 were selected from the National Center 
of Cancer, Najaf, Iraq. The treated sites were scanned 
with 3D computed tomography (CT). The radiation 
oncologist prescribed the dose emitted by the DHX 
linear  accelerator  (Varian  Medical  Systems,  CA,
USA) and delineated the target volumes. The TPS,
“Eclipse 13” was adopted for contouring and dose
comparison  concerning  the  OARs.  The  OARs 
considered in this study were the right and left head 
femur, the rectum, and the bladder. Physical planning 
employed  two  techniques:  3DCRT  and  IMRT  of  a 
step-and-shoot type. Statistical analysis employed the 
Statistical Package for the Social Sciences  software 
package  20. Data  were  expressed  as  means  ±
standard  deviation(SD). Inter group comparisons
employed a t -test. P  ˂ 0.05 was considered statistically
significant.

  IMRT  was  used  for  dose  calculation  via  TPS,
achieved through several  stages. The first step is a
CT scan, followed by determining the  field size to
identify the tumor. A dose calculation algorithm then
determined the radiation dose by applying Equation 1;
calibration  and  correction factors  were  ascertained
using the Monte Carlo program. To ensure quality,
the beam output and specified dose were tested before
radiation therapy. The TPS calculates the MU for each
segment by employing the following equations(13, 14):
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Where:
MU, Monitor Units per beam; (cGy/MU)ref, Calibration
dose rate; and CFs, Correction factors for: Beam
energy; Tissue depth (via PDD, TMR, or TAR); Field
size (output factors); SSD/SAD distance (inverse
square correction); and Beam modifiers (wedge
factors, etc.)

Results and discussion

The results of the statistical analyses of the actual
dose intensity reaching the organs at risk in patients
treated with 3DCRT and IMRT are shown in Table 1.
The organs at risk examined were the right and left
head femur, the rectum, and the bladder. No significant
differences were detected in the organs at risk
between the two techniques, except for the right head
femur, PTV tumor region at average dose values, and
the rectum. However, the bladder demonstrated highly
marked variations at an average dose value.

On observing and comparing the average radiation
doses (Table 1), 3DCRT results indicated its ability
to protect the organs at risk more efficiently than IMRT
for the rectum, CT scan body, and PTV (Figure 1) except
for the right/left femoral heads and the bladder, where
IMRT demonstrated a lower necessary dose than
3DCRT (Figure 2). Figure 3 shows the distribution
of radiation doses between 3DCRT and IMRT used
for prostate cancer radiotherapy. The prescribed dose
was typically restricted by the tolerance levels of the
organs at risk and the ability of the irradiation technique
to preserve such normal tissues. Hence, depending
on the technique used, the benefits of any new
treatment method may derive from an increase in the
likelihood of tumor cure, a decrease in that of patient

damage, or both. It is critical to protect the organs at
risk. Because cancer patients must not be exposed to
early- or late-stage radiation-associated toxicity, it is
extremely essential to preserve the healthy tissues
from damage. A very sensitive organ may be found
near the prostate. This research covered a majority
of the surrounding organs of the prostate, confirming
that the planning strategy adopted was safe.

Data analysis demonstrated that 3DCRT delivered
a lower radiation dose than IMRT to the rectum,
considering CT scans and PTV. In contrast, the IMRT
supplied superior doses to the other organs studied
(i.e., right and left femoral heads as well as the
bladder).

Pardo-Montero, et al. and Banaei A, et al.(16, 17)

evaluated the radiobiological influence of IMRT on
prostate tumors. IMRT, as inversely optimized, was
significantly radiobiologically and dosimetrically
superior to 3DCRT or the so-called conventional
planning technique. Concerning prostate damage, the
number of injuries decreased by 20.0% when the
dosage did not exceed the 45 Gy allowed. Radiation-
based treatment of prostate tumors also impacts the
most essential organs, such as the rectum and the
bladder. Generally, no highly irradiated tissues were
observed, and thus were not defined.(14-17)

The protective effects of 3DCRT on normal
tissues and organs were reported.(18-20) with special
focus on prostate cancer. They found out that the
effects of the doses received by all prostate cancer
patients were consistent with those expected of the
planning technique. These findings agreed with our
results, where the compatibility was superior to that
of the IMRT. Luxton G, et al.(21) reported a better
protection for prostate cancers with IMRT.

Table 1. A comparison of the dose reached to the organs at risks using the 3DCRTand the IMRT treatment planning
techniques.

IMRT (Gy)3DCRT (Gy)OARNo. P – value
AveragemaximumminimumAveragemaximumminimum

Rt. head1
0.00221.0 ± 4.641.4 ± 6.72.5 ± 1.826.5 ± 6.743.3 ± 7.62.1 ± 1.3femur *

Lt head2
0. 02521.1 ± 4.442.5 ± 8.92.4 ± 2.025.0 ± 7.243.0 ± 7.62.3 ± 2.3femur
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3  Rectum  4.9 ± 6.9  60.9 ± 2.3  30.5 ± 8.8  3.4 ± 2.8  62.8 ± 1.3  33.6 ± 11.3  0. 288
4  Bladder  5.5 ± 12.2  62.6 ± 1.1  27.5 ± 10.5  2.9 ± 5.4  63.5 ± 1.0  26.1 ± 11.1  0. 651
5  CT-scan

  Body  0.0  ± 0.0  63.3 ± 1.0  3.8 ± 1.6  0.0  ± 0.0  63.7 ± 0.8         5.9 ± 10.4    0. 320
6  PTV  48.3 ± 8.6  63.3 ± 1.0  61.3 ± 1.5  57.6 ± 3.4  63.7 ± 0.8  62.4 ± 1.0  0. 005*

*Significant difference at a level less than 0.05.



Chula Med JT. Abdulwahid et al.

Figure 1. (A) The dose spared to PV (average) using the 3DCRT and the IMRT treatment planning techniques; (B) The dose
spared to the right head femur (average) using the 3DCRT and the IMRT treatment planning techniques; and (C) The dose
spared to bladder (average) using the 3DCRT and the IMRT treatment planning techniques. IMRT, intensity-modulated
radiation therapy; 3DCRT, three-dimensional conformal radiotherapy.
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Figure 2. (A) The dose spared to the rectum (average) using the 3DCRT and the IMRT treatment planning techniques; (B)
The dose spared to CT- scan body (average) using the 3DCRT and the IMRT treatment planning techniques; and (C) The
dose spared to the right head femur (average) using the 3DCRT and the IMRT treatment planning techniques. IMRT,
intensity-modulated radiation therapy; 3DCRT, three-dimensional conformal radiotherapy.
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Fiandra C, et al.(22) supported our findings of
lower radiation dose exposure to the surrounding
healthy tissues/organs. Nevertheless, such an outcome
was much better with IMRT distal than 3DCRT
regarding rectal cancer. Arbea L, et al.(23) compared
the effects of the 3DCRT and IMRT plans on non-
spherical intracranial targets, and found that IMRT
delivered a decreased radiation dose to healthy
prostate glands. Recent studies(24-26) indicated no
significant differences in the maximum doses delivered
to the small bowels, rectum, and bladder in cervical
cancer patients between 3DCRT and IMERT.(27-29)

IMRT, as an inverse planning strategy, can easily
generate an optimal plan for a large target, as used in
a previous investigation.(29) It reported that IMRT was
more effective than 3DCRT in curing cancers,
particularly those with irregular forms and proximal
to vital organs. Additional improvements in treatment
outcomes may be expected when intensity modulation
is added to a fixed-field configuration, as shown
previously.(30-34)

Conclusion

This study is unique in that the amounts of radiation
dosages received by the organs directly in the path of
the radiation beam were calculated using two
techniques: 3DCRT and IMRT during the physical

planning stage. Based on these observations, it can
be suggested that these two techniques allowed the
least amount of radiation doses to reach the
surrounding OARs.

The step-and-shoot IMRT better protected most
radiation-sensitive, normal tissue structures, including
right and left femoral heads, and the bladder. However,
while other organs, such as the rectum, need to be
protected from the adverse effects of the 3DCRT
technique, depending on the patient’s status, as
indicated by CT scans and PTVs.
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Figure 3. Comparison of 3DCRT and IMRT in prostate cancer radiotherapy: dose distribution and protection of organs at
risk. IMRT, intensity-modulated radiation therapy; 3DCRT, three-dimensional conformal radiotherapy.
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