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Abstract

Background: Glucose 6-phosphate dehydrogenase (G6PD) is a key enzyme involved in the pentose phosphate
pathway that produces reduced nicotinamide adenine dinucleotide phosphate to support redox
homeostasis and cancer cell proliferation. While G6PD deficiency has been linked to reduced cancer risk, its
influence on hepatocellular carcinoma (HCC) remains unclear.

Objectives: This study aimed to investigate the prevalence of G6PD deficiency in patients with HCC and its
association with clinical parameters across the disease stages.

Methods: A cross-sectional study analyzed G6PD activity and clinical data from 174 patients with HCC, 100
patients infected with the hepatitis B virus (HBV), and 154 healthy controls. Peripheral blood G6PD activity
was measured, and the clinical parameters were compared between patients with early- and advanced-stage
HCC with and without G6PD deficiency.

Results: The prevalence of G6PD deficiency was comparable across patients with HCC (6.9%), patients with
HBYV infection (6.0%), and healthy controls (6.5%) (P =0.97), with no notable difference in clinical parameters
between early- (6.7%) and advanced-stage HCC (7.0%). Median G6PD activity was significantly higher in
patients with HCC (7.9 +£2.1 U/g Hb) compared to healthy controls (7.1 £2.5 U/g Hb) (P <0.05). Patients with
advanced-stage HCC exhibited elevated G6PD activity (8.1 + 2.5 U/g Hb), largely because of anemia. The
patients with G6PD deficiency and HCC, particularly at the advanced stage, had elevated liver damage
markers, including alkaline phosphatase (125.0 + 68.8 U/L), serum glutamic-oxaloacetic transaminase (69.5 +
78.0 U/L), and alpha-fetoprotein (258.8 + 1,010.1 ng/mL) levels.

Conclusion: G6PD deficiency does not appear to reduce HCC susceptibility but is associated with increased
liver damage in patients with HCC at an advanced stage. These findings highlight the potential importance
of G6PD in the progression of liver cancer and the need for further research regarding its therapeutic
implications.
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crucial role in this metabolic reprogramming by
producing nicotinamide adenine dinucleotide phosphate
(NADPH) for lipid synthesis and ribose 5-phosphate
(R5P) for nucleotide synthesis. Furthermore, NADPH
helps to generate reduced glutathione (GSH), which
protects cells from oxidative stress caused by reactive
oxygen species.*¥ G6PD activity, particularly in the
context of cell cycle progression, facilitates
biosynthesis and the metabolic demands of rapidly
proliferating tumor cells.®:>¢

Elevated expression levels of G6PD have been
consistently reported in various malignancies,
including hepatocellular carcinoma (HCC), where it
is linked to a poor prognosis and increased tumor
aggressiveness.’"'¥ Despite its essential role in tumor
progression, G6PD deficiency, which is a hereditary
enzyme defect that affects approximately 400 million
individuals worldwide, particularly in Africa, the
Mediterranean, the Middle East, and Southeast Asia‘'®
17, is proposed to be linked to reduced tumorigenesis
by impairing the PPP, thereby leading to a shortage of
NADPH and R5P, which is crucial for the survival of
cancer cells. G6PD deficiency prevalence varies
across regions, with higher frequencies observed in
Southeast Asia, including Laos, Cambodia, Thailand,
and Myanmar. "® Although establishing a low cancer
prevalence in G6PD-deficient populations is
challenging because of variations in genetic defect
frequency, restricted ethnic distribution, and cancer
tissue specificity!'”2%, recent findings have indicated
the reduced susceptibility to colorectal cancer and
HCC in individuals with G6PD deficiency.?” HCC is
a major cause of cancer-related mortality worldwide
that is often only diagnosed at advanced stages with
limited treatment options. Despite previous studies
focusing on the prevalence of G6PD deficiency and
its impact on patients with cancer®'??, the clinical
implications of G6PD deficiency in HCC, particularly
its association with liver damage and disease
progression, remain poorly understood.

The study aimed to investigate the prevalence of
G6PD deficiency in patients with HCC and its
association with the clinical parameters across
different disease stages. By elucidating the role of
G6PD deficiency in HCC progression and liver
damage, our findings provide insights into the potential
therapeutic application of targeting G6PD in liver
cancer management.
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Materials and methods

This study was reviewed and approved by the
Institutional Review Board of the Faculty of Medicine,
Chulalongkorn University (IRB no. 806/61, COA no.
218/2019; IRB no. 803/2017, COA no. 803/2017) and
the Research Ethics Committee of the National Blood
Centre, Thai Red Cross Society (COA no. NBC 7/
2016). The protocol of this study was conducted in
accordance with the Declaration of Helsinki for the
participation of human individuals. Written informed
consent was obtained from each participant before
they underwent any study procedures.

Patient specimens

In this cross-sectional study, 274 patients were
randomly enrolled, including 100 individuals with
hepatitis B virus (HBV) infection but not HCC and
174 individuals with HCC (95 non-HBV-related HCC
and 79 HBV-related HCC). HCC diagnosis was
confirmed through clinical criteria, imaging (ultrasound,
CT, and MRI), and biomarkers, with serum alpha-
fetoprotein (AFP) as a supporting marker. HBV
infection was confirmed by serological testing for
HBsAg and HBV-DNA quantification, thereby
ensuring the accurate classification of HCC and HBV
status. ¥ Participants were recruited in 2019 from
King Chulalongkorn Memorial Hospital, Thai
Red cross Society, Bangkok, Thailand. In addition, 154
healthy volunteers were randomly selected from blood
donors affiliated with the Thai Red Cross Society in
Bangkok, Thailand. Among the 174 patients with HCC,
stratification based on the Barcelona Clinic Liver
Cancer stages revealed 60 cases in the early stages
(0, A) and 114 cases in the advanced stages (B, C,
and D) (Figure 1). Fifty-eight (73.4%) of the 79
patients with HBV-related HCC were in the advanced
stages. Blood samples were collected at a single time
point prior to any medical treatment to prevent the
confounding effects of chemotherapy on the liver
enzymes and G6PD activity. Clinical data were
gathered at the time of initial diagnosis and tracked
until recurrence, death, or the last follow-up visit to
establish the prognosis.

Measurement of peripheral blood G6PD activity

G6PD activity in peripheral blood samples was
assessed using the Trinity Biotech quantitative G6PD
assay (Trinity Biotech, Ireland). The G6PD activity
levels, indicated by NADPH generation, were



Vol. 69 No.5
September -October 2025

determined by measuring the change in absorbance
at 340 nm over a 5-min period at 37°C using
a temperature-regulated spectrophotometer
(Shimadzu UV-1800; Shimadzu, Japan). Hemoglobin
concentration, which is necessary for calculating
G6PD activity (U/g Hb), was determined with
a hemoglobin photometer (Hemocue, Angelholm,
Sweden). Participants with G6PD activity below 2.2
U/g Hb (<30.0% of the normal median)®%
were defined as having G6PD deficiency.

Statistical analysis
All statistical analyses were performed using SPSS
version 29 (IBM SPSS software, IL, USA). The data
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distribution was assessed using the Kolmogorov—
Smirnov/Shapiro—Wilk tests. Parametric tests were
performed on normally distributed data, which were
presented as percentages and the mean + standard
deviation(SD). Nonparametric tests were used for data
that were not normally distributed and were presented
as the median + interquartile range (IQR). Categorical
variables were analyzed using Pearson’s x2 test or
Fisher’s Exact test, while the quantitative variables
were assessed using either the Mann—Whitney U test,
Student’s t-test, or Kruskal-Wallis one-way analysis
of variance. A statistically significant difference was
defined as a two-sided P < 0.05.

Participants from King Chulalongkorn Memorial Hospital
and Thai Red Cross society, Bangkok, Thailand (n=478)

Initial Participants:

* Healthy controls (n=154)

* HBV infected patients (n=100)
* HCC patients (n =224)

Excluded: HCC patients (n=50)
* Missing BCLC status data (n = 33)

A

*l+ Missing clinical data (n=17)

Final enrollment:

* Healthy controls (n=154)

* HBVinfected patients (n=100)
* HCC patients (n=174)

* Early stages (stage 0 and A) (n = 60)
* Advanced stage (stage B, C, and D) (n=114)

Figure 1. Flow diagram for patient enrollment.
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Results

Demographic data and prevalence of G6PD
deficiency

The majority of participants in the study were males,
with a higher proportion among patients with HCC
compared to that of patients with HBV infection and
the healthy controls (P < 0.001) (Table 1). Patients
with HCC were significantly older than patients with
HBYV infection and the healthy controls (P <0.001).
The prevalence of G6PD deficiency was comparable
across the three groups: healthy controls, patients with
HBYV infection, and patients with HCC (P = 0.965).
No significant difference was observed for G6PD
deficiency prevalence between the early and advanced
stages of HCC (P = 1.000).

Peripheral blood G6PD activity

The median peripheral blood G6PD activity in patients
with HCC was significantly higher than that in the
healthy controls (P = 0.048) and patients with HBV
infection (P = 0.035) (Table 1). Patients with
advanced-stage HCC exhibited the highest G6PD
activity, significantly exceeding that of patients with
early-stage HCC (P = 0.006) (Table 1). Although
age and gender differed significantly among the patient
groups, neither had a significant impact on the
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peripheral blood G6PD activity (age: P=0.115; gender:
P = 0.934). This elevation in G6PD activity was
primarily attributed to anemia in patients with
advanced-stage HCC, as reduced hemoglobin levels
(Table 2) are commonly used to normalize G6PD
measurements.

Association of G6PD deficiency with clinical
parameters in patients with HCC

In patients with advanced-stage HCC and normal
G6PD levels, significant reductions in hemoglobin
(P =0.004) and hematocrit levels (P = 0.005) were
observed compared to those of patients with early-
stage HCC. In addition, patients with advanced-stage
HCC and normal G6PD levels had significantly higher
platelet counts (P < 0.001) and levels of alkaline
phosphatase (ALP) (P < 0.001), serum glutamic-
oxaloacetic transaminase (SGOT) (P=0.001), serum
glutamate-pyruvate transaminase (SGPT) (P=0.006),
and AFP (P < 0.001) compared to those of patients
with early-stage HCC. Among patients with HCC and
G6PD deficiency, advanced-stage individuals exhibited
anemia and elevated levels of ALP, SGOT, and AFP,
which were above the normal reference ranges.
However, these parameters were not significantly
different compared to those of patients with advanced-
stage HCC and normal G6PD activity (Table 2).

Table 1. Demographic data and prevalence of G6PD deficiency among study participants.

Parameter Healthy HBV-infected HCC P-value HCC P-value
(n=154) HCC (n=174) Early-stage  Advanced-
(n=100) (n=60) stage (n =114)
Gender (males) (%) 99(64.3)F  51%(51.0) 138(79.3)" <0.001" 48(80.0) 90(78.9) 0.895
Age (years) (mean+SD) 55.1+12.6 394+11.6 625+11.6 <0.001° 63.8+11.0 61.0+11.8 0.237%
(22.0-84.0) (21.0-66.0) (23.0-89.0) (23.0-84.0)  (33.0-89.0)
GOPD deficiency (%) 10(6.5) 6(6.0) 12(6.9) 0.965 4(6.7) 8(7.0) 1.000*
Male (%) 7/99(7.1)  6/51%(11.8) 11/138 (8.0) 0.677° 4/48 (8.3) 7/90 (7.8) 1.000*
Female (%) 3/55(5.5)  0/46"(0.0) 1/36(2.8) 04197 0/12 124 (4.2) 1.000*
G6PD activity (median+ 7.1+2.5 72+19 79+2.1 0.0097"  74+1.6 8.1+2.5 0.006**
IQR) (0.1-14.3) (0.5-25.5) (0.2-21.9) (0.2-14.0) (0.4-21.9)

# There were 3 cases where gender information was not available.
TPearson’s 2 test between healthy, HBV-infected, and HCC patients.
$ ANOVA post-hoc test (Bonferroni correction) between healthy, HBV-infected, and HCC patients.

% Student’s t-test between early- and advanced-stage patients.

* Fisher’s Exact Test between early- and advanced-stage patients.
T Kruskal-Wallis One-Way ANOVA between healthy, HBV-infected, and HCC patients.
** Mann-Whitney U test between early- and advanced-stage patients.
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Discussion

HCC is the predominant cause of cancer-related
mortality worldwide, with most cases only diagnosed
at advanced stages, which limits treatment options and
contributes to poor prognosis.®: 2% Cancer cells
require increased biosynthesis and redox homeostasis
to sustain their rapid proliferation. G6PD is central to
meeting these demands by producing NADPH
for reductive biosynthesis and protection against
oxidative stress and producing RSP for nucleotide
synthesis.®* While elevated G6PD expression levels
have been implicated in the progression of several
malignancies, including HCC, the influence of
hereditary G6PD deficiency on liver cancer
progression remains poorly understood. 13- 2!-27

In this study, we found that G6PD deficiency was
not associated with reduced HCC susceptibility, as its
prevalence was comparable across the groups of
patients with HCC, patients with HBV infection, and
healthy controls. These findings align with the reported
prevalence of G6PD deficiency in the Thai population
(5.6% —11.1%)@% 2 and suggest that G6PD deficiency
may not play a protective role in HCC initiation.
However, this contrasts with previous studies, which
proposed reduced cancer risk in G6PD-deficient
individuals, particularly regarding colorectal cancer
and HCC.@"39 The lack of observed protective effect
may reflect compensatory metabolic mechanisms,

Normal Ilver with
normal G6PD

- HCCwithG6PD GéPD
overexpression

pv 9'
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such as the activation of nucleotide salvage pathways
or alternative NADPH-generating enzymes, including
NADP(+)-dependent isocitrate dehydrogenase
and the cytosolic malic enzyme, which may mitigate
the impact of G6PD deficiency on tumor cell
survival.®13¥ Further studies monitoring these
compensatory pathways may provide valuable insights
into their roles in sustaining cancer proliferation.

Interestingly, we observed significantly elevated
peripheral blood G6PD activity in patients with
advanced-stage HCC compared with that of patients
with early-stage HCC and healthy controls. While this
observation is consistent with reports of G6PD
upregulation in advanced-stage cancers, such as
Merkel cell carcinoma®®, the underlying cause in our
study appears distinct. Rather than reflecting the
increased enzymatic expression in tumor cells, this
elevated blood G6PD activity is likely a technical
artifact driven by anemia, which is a common feature
in patients with advanced cancer. As G6PD activity
is typically normalized to hemoglobin levels, low
hemoglobin concentrations can artifactually inflate
calculated G6PD values. Therefore, the apparent
increase in peripheral G6PD activity in advanced-
stage HCC may be, at least in part, a consequence of
hemoglobin normalization rather than a true
upregulation of enzymatic activity. This distinction is
important when interpreting enzymatic activity in
systemic samples.

Advanced-stage HCC with
G6PD de

GoP—2 2, 6pG
7

NADP+ NADPH — ROS NADP+

/-\
NADI II I ROS)

G6P———> 6PG
7

naorH — ROS

Liver damage
ALP, SGOT, AFP

Figure 2. The proposed link between G6PD deficiency and increased liver damage in HCC, highlighting oxidative stress

and metabolic vulnerability in advanced disease stage.
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Despite its lack of a protective effect on cancer
risk, G6PD deficiency was associated with increased
liver injury in patients with advanced-stage HCC.
Elevated levels of ALP, SGOT, and AFP were
observed in G6PD-deficient individuals, although the
differences were not significant because of the small
sample size. These trends may reflect the crucial role
of NADPH in hepatocyte metabolism. As the PPP is
the primary source of NADPH in liver cells,
particularly in the absence of mitochondrial malic
enzyme activity®® | G6PD deficiency may impair
redox homeostasis, promote oxidative stress, and
exacerbate liver damage.®%*? This association
suggests that G6PD deficiency, while not reducing
HCC susceptibility, may worsen the clinical outcomes
in patients with advanced disease. Targeting G6PD
activity and its associated pathways may present a
therapeutic strategy for mitigating liver damage and
improving outcomes in patients with HCC.

Our findings highlight the need to interpret
peripheral G6PD activity in the context of the patient’s
hematological status and underscore the potential
relevance of G6PD-related pathways in the
progression of liver cancer. However, this study is
limited by the small number of patients with HCC and
G6PD deficiency, which may reduce the statistical
power. Future research with larger cohorts is needed
to confirm these observations and further explore the
metabolic consequences of G6PD deficiency in liver
cancer (Figure 2).

Conclusion

This study found no significant association between
G6PD deficiency and HCC susceptibility, as the
prevalence thereof was similar among patients with
HCC, patients with HBV infection, and healthy
controls. However, patients with advanced-stage
HCC exhibited elevated peripheral blood G6PD
activity, which was likely influenced by anemia, but
those with G6PD deficiency exhibited increased
markers of liver damage. These findings suggest that
although G6PD deficiency does not reduce HCC risk,
it may exacerbate liver damage in advanced disease
stages. Future studies should explore compensatory
metabolic pathways and assess the therapeutic
potential of targeting G6PD-related mechanisms in
HCC.

Impact of G6PD deficiency on liver damage and disease progression in 313
hepatocellular carcinoma: a cross-sectional study in Thailand
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