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Abstract

Background: Recent studies have highlighted the relationship between
disease (AD), revealing how gut microbial balance impacts conditfons
diseases to neurological disorders. The emerging field of the gut-brai
microbial metabolites influences AD progression. However, thefe 1

mechanisms involved in neurological disease when gut micrm&
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bowel disease (IBD).
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goests that the production of

d understanding of molecular
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ysbiosis, and AD were obtained from the GEO

tially expressed genes were identified with P < 0.05

alysis using DAVID ( P < 0.05 and FDR < 0.05) was performed.

ifferentially expressed genes (P < 0.05) were integrated into a
STRING.

comprehensive network using Gene A
Results: In total, AD and inflamma % el disease samples shared 1,715 genes in common. The top 10
common hub genes involved in‘ E ewegulation of leukocyte activation (CLEC7A, VNNI1, SASH3, IL33,

CD6,NFKBIZ, AIF1,ZBTB],
their top scores.
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with inflammatory
neurodegeneration. Thé
targeting genes and molecular pathways within GBA.

, LILRB1) were selected from the protein-protein interactions based on

liscayered that AD and IBD share hub genes in their pathogenesis mainly through
ocyte activation in the gut-brain axis that involves immune cell trafficking associated
activation in IBD and microglia activation in AD, leading to neuroinflammation and
inding provides an insight into anti-neuroinflammatory therapeutic development
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The gut-brain axis (GBA), a complex network of
bi-directional communication between the central and
the enteric nervous system, has been implicated in
the plethora of health issues.!” One approach to define
gut health is as a state of physical and mental well-
being characterized by the absence of gastrointestinal
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(GI) complaints and absence of indications or risks of
bowel disease.® A balanced gut-brain axis is essential
for fostering a symbiotic relationship with the gut
microbiota, thereby facilitating crucial biological
functions such as nutrient absorption, vitamin synthesis,
and defense against pathogens.® However, this
balance can be disturbed by many factors, including
chronic stress, poor diet, or antibiotic misuse, leading
to a dysregulated state characterized by increased
intestinal permeability and systemic inflammation.®-*
This dysregulated state will lead to the development
of functional gastrointestinal diseases (FGIDs).®:*
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FGIDs are a range of disorders, such as irritable
bowel syndrome, functional dyspepsia, or functional
constipation, characterized by chronic or recurrent GI
symptoms, which are closely associated with GBA
dysregulation.® Altered communications within this
GBA can trigger a cascade of negative physiological
responses such as abnormal gut motility, visceral
hypersensitivity, and anomalous secretion patterns,
which in turn exacerbates the FGID’s symptoms.©
Furthermore, several scientific studies suggest
repercussions of this GBA dysregulation transcend
the limitations of the gastrointestinal tract, having a
substantial impact on brain health.” For instance,
the persistent inflammation, byproduct of gut
dysregulation, has been implicated in promoting
neuroinflammation and neurodegeneration, affecting
the structural and functional integrity of the brain.”
Current research suggests that the disrupted gut
microbiota can influence brain health through the
productions of metabolites and endotoxins which are
potentially amyloidogenic, a distinctive feature of
Alzheimer’s disease (AD).7'V Thus, a direct link has
been found between altered gut microbiota and the
worsening of Alzheimer’s symptoms, indicating
possible function for the gut-brain axis in,the

proposed, direct causation remains elusive, e :
the molecular association in IBD and AdD h

bidirectional GBA. Hence, it is worth ing the
gene signatures and molecular pathiwaygasSociated
with gut microbiome dysbiosi d AD through
data analytics approaches, ould provide a new

insights gut-brain axis to bri BD and AD, as well
as contribute to therapeutic development.

Materials and methods

This study was reviewed and approved by the
Institutional Review Board of IMU University (4.11/
JCM-265/2023) on 18" May 2023.

Data selection and identification

The publicly available gene expression datasets were
obtained from Gene Expression Omnibus (GEO) using
specific keywords such as “gut microbiome dysbiosis”,
“Alzheimer’s disease”, “gut dysregulation”,
“microbiome composition”, “‘gut-brain axis”, “gut-brain
signaling”, and “functional gastrointestinal disorders”.
These searches identified relevant datasets of which

four datasets (GSE118553, GSE63063, GSE36701and
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GSE13367) were selected for further analysis, based
on the diseased samples and normal samples in each
dataset, respectively.(Z19

Pre-processing of datasets

The selected datasets underwent internal and external
validation to ensure data comparability across different
platforms. The internal validation involved K-Fold
cross-validation, bootstrapping, and cross-validation
with feature selection that includes identifying the
normal control and diseased samples in the datasets.
Then, the genes were annotated to the datasets by
consolidating gene symbols from different platforms
used by the respective datasets. The platform and
datasets were cross validate ensure the accuracy
of the gene annotation befage further data processing.
Normalization yasp g‘ etween normal control
and diseased sa opidentify the differentially
expressed g &n the respective datasets.

Feature’selectiofis
i xpressed genes (DEGs) were identified
dataset using specific criteria (P < 0.05
FC > 1). This specific criterion threshold
selected to capture genes that may exhibit
moderate but relevant changes in expression, aligning
with the exploratory nature of the research and the
desire to cast a broad network of potential differentially
expressed genes. Functional genomics analysis was
carried out on the selected DEGs using the Database
for Annotation, Visualization, and Integrated Discovery
(DAVID) through a linear regression approach, with
statistical significance defined as P <0.05, Benjamin-
corrected value < 0.05 and false discovery rates
(FDR) < 0.05.

Predictive model development

The DEGs identified in functional genomics analysis
were further subjected to study the alterations in
pathway activity and biological features through a
predictive protein-protein interactions (PPIs) model
with significance (P < 0.05) using GeneMANIA and
STRING. In GeneMANIA, a pathway network was
plotted between the DEGs of AD and IBD, whereas
in STRING, a co-expression network was plotted with
a confidence level of 0.7. This network aimed to unveil
specific patterns or sets of genes that are indicative
of or associated with biological conditions or processes
associated with gut microbiome dysbiosis-linked IBD
and AD, providing insights into potential pathogenic
mechanisms.
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Results

Identification of commonly shared DEGs between
ADand IBD

Following preprocessing and datasets validation, sets
of differentially expressed genes (DEGs) were
produced. A total of 1399 DEGs were obtained from
IBD samples, and 11970 DEGs were obtained from
AD samples, while a total of 1,715 commonly shared
DEGs were observed.

Functional genomics analysis

Functional genomics analysis was conducted
employing DAVID to elucidate the functional attributes
of'the 1,715 identified DEGs (Figure 1). In the realm
of molecular function (MF), the most substantial
category, characterized by 1,295 genes, centered
around protein binding (GO:0005515). This cohort
featured prominent genes like OAS2, XRN1,ALASI,
NT5C2, and AZI2. Within the cellular component (CC)
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domain, 683 genes were ascribed to the cytosol
(G0O:0005829) category. Notable representatives
encompassed AKAP13, ARF4, APIP, BLNK, and
AHI1. Furthermore, the biological processes (BP)
category exhibited 183 genes primarily linked to signal
transduction (GO:0007165). Among these genes were
HTR3A, ATM, CCL23, DEK, and JAK2. The
functional genomic analysis reveals that the 1,715
identified DEGs are associated with specific molecular
functions, cellular components, and biological
processes, which aid in potential roles and functions
of these DEGs.

The co-expression network analysis of IBD and AD
The genes corresp to the top 10 GO categories,
including MF, BP,"and C@, were subjected to further
analysis&lsin % G database. The genes were
selected Based om’'specific criteria of P < 0.05,

Benja &cted value < 0.05, and FDR < 0.05.
Tl& ession network analysis in STRING,

cytopl
membrane
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Figure 1. Functional genomics analysis of the differentially expressed genes among irritable bowel disease and Alzheimer’s
disease. Orange - biological processes; Green — cellular components; Blue - molecular function.
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Figure 2. Co-expression network analysis of irritable bo%ang ;lzheimer ’s disease associated with MHC class I1

Table 1. Gene interactions associated with positive ation of cell activation.

Genel 2 Weight
IL17A 1.000
TNFSF18 RSF18 1.000
TNFRSF1A AP 1.000
TNFAIP3 TAXI1BP1 1.000
CD244 CD48 1.000
TNFRSF8 TNFSF8 0.927
PATZ1 RNF4 0.904
CSTA TFAP2C 0.888
TAP1 TAPBP 0.834
LCP2 WAS 0.831
AIP AHR 0.746
CASP1 NLRP1 0.715

which reveals that commonly shared DEGs are mainly
associated with MHC (major histocompatibility
complex) class Il activity through Human Leukocyte
Antigen (HLA) family (Figure 2).

The predictive protein-protein interaction pathway
analysis of IBD and AD

GeneMANIA was used to generate a protein-protein
interaction (PPI) network using genes identified in

functional genomics analysis. The network reveals a
high degree of association between both diseases,
especially in the regulation of the leukocyte activation
signaling pathway. Table 1 provides a list of gene
networks associated with the positive regulation of
cell activation, and the listed gene networks exhibit
high confidence in the functional association between
the genes.
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Discussion

Identification of commonly shared DEGs between
AD and IBD

This present study engages datasets involving AD
(GSE118553 and GSE63063) and IBD-related
(GSE36701 and GSE13367) to explore the potential
hub genes and pathways involved in GBA. Extending
the bimodal relationship, it can be postulated that AD
and IBD may influence each other through shared
biological processes and mechanisms contributed by
GBA’s bidirectional unique features. AD is primarily
characterized by neurodegeneration and cognitive
decline, but emerging research suggests that it may
also have systemic effects on the immune system and
GI tract."® This is especially significant given that
many of the discovered DEGs may be involved in
immune response regulation, inflammation, and gut-
brain axis interactions. On the other hand, IBD is a
chronic inflammatory condition of the GI tract, which
includes ulcerative colitis (UC) and Crohn’s disease
(CD), but emerging research indicates that it can al
impact the central nervous system (CNS) and cogniti
function.!'”-'® This impact may be mediate

release of pro-inflammatory cytokines, which cou
potentially affect brain function and contriflite to the
development or exacerbation of AD.§

Functional genomics analysis @ entially
expressed genes among IBD,

The functional genomic DEGs among

IBD and AD reveal
dysregulation. The st ighlights that these two
distinct diseases share pathophysiological mechanisms
rooted primarily in immune system dysregulation,
especially inflammatory dysregulation, through BP, MF,
and CC. In terms of biological processes, both AD
and IBD exhibit altered cell migration, which is essential
for immune cell trafficking and inflammation."*->” This
altered migration pattern can lead to immune cell
infiltration within the brain, resulting in a
microenvironment characterized by chronic
inflammation and neuroinflammation.? This, in turn,
results in activation of microglia, culminating in the
release of pro-inflammatory molecules that can inflict
harm upon neurons.®? Elevated tumor necrosis factor-
alpha (TNF-a) production, a hallmark pro-
inflammatory cytokine is present. Within the AD
context, the heightened TNF-a level serves as a
catalyst for chronic brain inflammation, which results
in the initiation of cascade events leading to

iological pathway
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neurodegeneration.?® The involvement of T-cell
activation, a hallmark of maladaptive immunity in both
AD and IBD."% 2% In AD, dysregulated T-cell
activation can result in the release of cytotoxic
molecules, exerting damage upon neurons.'®29 While
in IBD, this can result in increased intestinal
permeability, allowing the translocation of luminal
microbial products, such as bacterial endotoxins, into
the bloodstream.'” The enriched genes related to
defense against viruses illustrated in this study suggest
viral infections as potential triggers. The virus enters
the brain causing neuronal death or activating antiviral
responses that result in neuroinflammation and AD
pathology.® Systemic infections like cytomegalovirus
can directly dama intestinal mucosa, resulting
in compromise_o egrity of the gut barrier,
allowingthe % ion of microbial products and
antigens i ¢ laghina propria in IBD.?® In addition,
genes @Ssoctated with RNA polymerase II-driven
tra iptioh and signal transduction emphasize
e%f olecular regulation and signaling alterations
thége diseases. Dysregulated transcriptional
ctivation in IBD can lead to an influx of activated
mune cells into the gut mucosa, where they
contribute to tissue damage and inflammation.*” While
dysregulated signal transduction in AD can lead to
the survival of dysfunctional neurons or the apoptosis
of healthy neurons. ®® Discrepancies in apoptotic
process can indicate propagation of inflammation or
induce tissue damage. Evidence of caspase activation
and altered expression of apoptotic proteins postulated
apoptosis is a potential neuronal cell death
mechanism.?®2” Besides that, increased apoptosis is
noted in the inflamed mucosa of IBD patients.?
This present study underscores the significant
overlap in molecular functions such as “protein
binding”, “cadherin binding”, “identical protein binding”
and “actin binding”, which indicates that there is a
commonality in altered protein interactions between
these diseases. These disruptions in cellular adhesion
suggested a link to disrupted signaling pathways
involving genes like TNF and nuclear factor-kappa B
(NF-kB), leading to sustained inflammation in IBD©Y,
as well as aberrant protein interactions involving genes
such as APP, PSEN1, and MAPT contribute to the
formation of beta-amyloid (AB) plaques and tau
tangles, a hallmark of AD_pathogenesis.% 2?
Furthermore, molecular functions like “ATP binding”,
“phosphotyrosine binding”, “protein kinase binding”,
and “non-membrane spanning protein tyrosine kinase
activity” also suggest dysregulated signaling pathways.
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For example, genes such as JAK2 and STAT3 can
contribute to persistent immune activation and
inflammation in IBD.®? In AD, genes such as
MAPK1, MAPK3, and GSK3B may be implicated in
aberrant signaling, leading to neuronal cell death and
cognitive decline.®*3% The presence of “ubiquitin
protein ligase binding” suggests alterations in protein
regulation, particularly ubiquitination. In both IBD and
AD, genes like UBE2D1, UBE2D3, and UBE2N
could be involved in the dysregulation of protein
turnover.®® This dysfunction may lead to the
accumulation of aberrant proteins, such as pro-
inflammatory mediators in IBD and AP and tau in
AD.®%3 The presence of “peptide antigen binding”
suggests the involvement of immune system in both
conditions. Genes like HLA-DQB1 and HLA-DRB1
are involved in antigen presentation and immunity
regulation, leading to inflammation in IBD.®® Immune-
related genes like CD33, and TREM 2 regulate
microglial function and phagocytosis, impacting AP
accumulation and subsequent neuroinflammation.”
The cellular components analysis in this study
reveals a common potential pathogenesis in both IBD
and AD through GBA, such as aberrant secreto
process and barrier integrity dysfunction. The
secretory granule membrane plays a crucial rolessin
Aa peptide secretion.“” 4D The amyloid pregcur:
protein (APP) processed in the Golgi a 1%
undergoes sequential cleavages, whichdavolye the
beta-site APP-cleaving enzyme 1 (B@n the
y-secretase complex (composed re 1 and
2, encoded by PSENI a enes).0- 4D
Dysregulation of these pro esults in abnormal
AP accumulation and developed neuroinflammation,
subsequently neurodegeneration”as observed in AD
pathogenesis.“* *D The tertiary granule membrane
reflects altered vesicle trafficking, possibly involving
genes related to vesicle transport like VPS35 and
VPS36, that can control the level of Ap peptides.*?
Whereas in IBD, the secretory granules are involved
in the release of pro-inflammatory mediators by
neutrophils, influenced by genes such as interleukin
(IL)-6 and TNF-a.'® ' These pro-inflammatory
mediators contribute to inflammatory activation in the
gut microenvironment. The neuronal plasma
membrane and focal adhesions are involved in tissue
integrity, and abnormalities in the Neurexin 1 (NRXN1)
gene are linked to synaptic dysfunction.®3-49
Overexpression or mutation of the NRXNI1 gene is
postulated to diminish synaptic plasticity, resulting in
memory impairment.“? The focal adhesions are
involved with epithelial adhesion and migration,
commonly associated with genes like ITGA6, which
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has the ability to induce very-early-onset IBD.“¢47
In addition, the Golgi dysfunction can affect mucin
processing due to MUC2 mutations.“® 4 Impairment
in mucus production could affect the intestinal barrier
stability, favoring bacterial entry, resulting in
microbiome dysbiosis.“” The changes in nucleoplasm
can affect transcriptional regulation of the
apolipoprotein E (APOE) gene, influencing Ap
aggregation and neuroinflammation.’ 3% The
alterations in the neuronal plasma membrane can
affect synaptic function, with the APOE gene
contributing to synaptic plasticity and tau protein
abnormalities which impacts membrane stability and
cytoplasmic changes which are driven by tau protein,
microtubule stabilizationf'and, disruption.“* 4 The
extracellular exosome _campromote AP aggregation
and then accelqate ion of amyloid plaques.
D In addition, théchamgesfin nucleoplasm may impact
tissue repairgg®nes®uch as NOD2, associated with
autopha %on in the intestines.®” The plasma
membra%e ved in maintaining the integrity of
he i inalyepithelial barrier components, such as
erifl (CDH1) and tight junction proteins.®: 32
plasmic processes often involve cytokine

aling pathways driven by genes like IL-6 and
TNF-0.1% 27

Co-expression network analysis of IBD and AD
associated with MHC Class Il activity

In IBD, a key finding is increased epithelial MHC
class II expression in response to initial microbial
colonization. MHC class Il molecules are important
for presenting exogenous antigens to immune
cells, especially CD4+ T cells, to initiate adaptive
responses.®® Inappropriate immune responses
which typically involve activation of CD4+ T cells,
particularly Thl and Th17 subsets of interferon-
gamma (IFN-y) and interleukins (IL-17, IL-21, IL-
21.1L-22, 1L-26).6% 59 This suggests that early

microbial colonization of the gut induces expression
of MHC class Il molecules in epithelial cells, which
may lead to presentation of microbial antigens to CD4+
T cells.®* 3 Furthermore, studies have highlighted
the importance of histone deacetylase 3 (HDAC3),
an enzyme involved in gene regulation, especially for
the maintenance of MHC class II expression in
intestinal epithelial cells.®**> Loss of HDAC3 reduces
MHC class II expression and impairs the regulation
of commensal specific CD4+ T cells, leading to an



Vol. 70 No. 1
January - February 2026

imbalance between regulatory T cells (Tregs) and pro-
inflammatory Th17 cells, with a shift to Th17
dominance. Notably, patients with active IBD are
known to have commensal-specific CD4+ T cells that
secrete large amounts of 1L-17.6%

Several studies have deduced that a few factors
link gut microbiota to AD, such as the role of
Escherichia coli (E. coli)-derived neurotoxins, the
presence of bacterial amyloids, and microbiome-driven
alterations in microglial function and
neuroinflammation.®> These studies point out the role
of MHC class II molecules in mediating the
interactions between the gut microbiota and AD-
related neuroinflammation. E.coli-derived neurotoxins
in Proteobacteria are implicated in neuropathology in
AD. These neurotoxins can induce the release of pro-
inflammatory cytokines, contributing to systemic
inflammation and exacerbating AD pathology.*®
Furthermore, bacterial amyloids produced by various
bacterial strains share structural similarities with CNS
amyloid.®”-°® These bacterial amyloids could
potentially prime the immune system and induce
the misfolding of host proteins, including AP
humans.® ' In addition, AP deposition may jaitiall
occur in the gastrointestinal tract, migrate via the v.

nerve to the brain through the GBA, leadin, ognitive
impairment.®® Moreover, activated microglia and
reactive astrocytes are characteris ures of
neuroinflammation.®** ) Dysfuneti croglia,

bute to neural
e pregfesses.”

prone to chronic activation, ca
network damage as the dis

Protein-protein int

and AD associated
leukocyte activation
Protein-protein interaction network highlights the
intricate process governing the initiation of immune
activation in IBD, driven by a network of genes
primarily involved in immune regulation and
inflammation. This multifaceted process commences
with an inciting event, encompassing genetic
predisposition, environmental factors, or infections.
16.60.61) This initial trigger disrupts the delicate
equilibrium within the gut microbiome, leading to a
state of dysbiosis characterized by an excessive
presence of pathogenic bacteria at the expense of
beneficial ones."-%? This dysbiosis sets the stage for
immune activation to unfold. Two key genes, NFKBIZ
and CD6, play prominent roles in this cascade. %
The altered microbial composition subsequently

pathway analysis of IBD
positive regulation of
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triggers the release of pro-inflammatory cytokines and
chemokines, a response orchestrated by genes like
CLEC7A and IL-33, as immune cells strive to
counteract these changes.®* % This dysregulation of
the microbiota and the ensuing immune reactions
collectively establish an environment of chronic
inflammation within the gastrointestinal tract,
perpetuating tissue damage and disrupting the delicate
balance of the gut’s immune ecosystem.) The
cascade of immune activation is driven by the
recognition of bacterial antigens by antigen-presenting
cells, such as dendritic cells and macrophages, which
sense and present these antigens to T-cells with a
notable emphasis on effector T-cells such as Th1 and
Th17.%35% Upon tion, these T-cells subsets
produce great tittes of pro-inflammatory

cytokine;s, i NF-o and IL-17, which then
amplifies ¢he atory cascade.®* %59
As@Rronig inflammation is a recognized risk factor

for immune activation seen in IBD may
e&) or accelerate the development of AD in
cepsible individuals.'%%) The accumulation of Aa
lagues and neuroinflammation is an AD hallmark.®"
enetic variants linked to AD such as NR4A3, CD74
and TNFSF13 may contribute to immune activation
in the brain.®”-*) Recent studies suggest that T-cells,
including CD4+ T-cells could infiltrate the brain in AD
by crossing blood brain barrier.?? This
neuroinflammatory process can have systemic impacts
through GBA due to the impaired intestinal barrier
caused by microbiome dysbiosis, affecting intestinal
permeability and subsequently crossing the blood brain
barrier.®: 9 Dysregulation of genes like CD6 is
associated with both IBD and AD, and may mediate
communication between the CNS and the gut, which
then impacts gut function and microbiota composition,
potentially contributing to IBD.® % In addition,
interactions were identified in GeneMANIA, offering
insights into the interconnected molecular pathways
that contribute to the bidirectional pathogenesis of IBD
and AD.

Among these interactions, IL-17A and IL-17RA
are involved in the IL-17 signaling pathway, known
for its role in inflammation, which can potentially link
IBD-induced gut inflammation to systemic
inflammation associated with AD.("® ' Similarly,
studies suggested TNFSF18 and TNFRSF18 are key
players in T-cell regulation, hinting at a connection
between dysregulated immune responses in IBD and
AD.77) TNFRSF1A and DAP interactions are
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implicated in inflammation, reflecting chronic
inflammation shared between both conditions.
TNFAIP3 and TAX1BP1 govern NF-kB regulation,
contributing to sustained NF-«xB activation, a common
denominator in IBD and AD."*7® CD244 and CD48
interactions are suggestive of dysfunctional NK and
T cells, common in both diseases.”* ™ TNFRSFS8 and
TNFSF8 interactions may participate in monocyte-
mediated inflammation in IBD."® PATZ1 and RNF4
interactions influence gene expression, possibly
affecting immune dysregulation and inflammation in
both conditions.””7” Cystatin A (CSTA) and
transcription factor AP-2 gamma (TFAP2C)
interactions impact protease inhibition and
transcriptional regulation; it was suggested that this
may a gene expression in epithelial and Tau protein,
which is relevant to IBD and AD.®%#) TAP1 and
TAPBP interactions are pivotal in antigen presentation,
potentially leading to abnormal immune responses in
both diseases.®? LCP2 and WAS interactions in T-
cell signaling may contribute to immune dysregulation
seen in IBD and AD.®3% AIP and AHR interactions

Is in gut and brain
vironments
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influence aryl hydrocarbon receptor signaling,
impacting immune responses and inflammation in both
diseases.®%” Finally, CASP1 and NLRP1 interactions
are linked to inflammasome activation, which
contributes to excessive inflammation in both IBD and
AD.®% %) However, data analytics approaches
still possess their own limitations, and further studies
such as in-vitro analysis, are still required to verify
the current findings (Figure 3).

Conclusion

This study postulated that the 10 top DEGs are
potentially associated gyith immune system
dysregulation, mainly po,

activation. This associagi

d inflammatory responses,
trafficking associated with
vation in IBD and microglia
at could lead to neuroinflammation
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Figure 3. AD and IBD shares pathogenesis mainly through positive regulation of leukocyte activation in gut-brain axis.

AD, Alzheimer’s disease; IBD, irritable bowel disease.
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and neurodegeneration. The data generated in this
study provides potential insight into AD therapeutic
development by targeting the hub gene and molecular
pathways associated with gut microbiome dysbiosis-
linked IBD through GBA.
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