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Abstract

Prediction of Intraoperative CSF Leakage Associated with Transsphenoidal Pituitary Adenoma Surgery
using Artificial Intelligence
Kusawadee Juengsirakulwit, MD., Rungsak Siwanuwatn, MD.

Neurosurgery Division, Department of Surgery, Faculty of Medicine, Chulalongkorn University

Objectives: This study was to using artificial intelligence for prediction of intraoperative CSF leak in
transsphenoidal surgery for pituitary adenoma.

Material and Methods: Retrospective study of the pituitary adenoma patients who underwent transs-
phenoidal surgery in KCMH during 1/1/2015 — 31/12/2020, this study included patients. The associated
intraoperative Cerebrospinal fluid (CSF) leak with demographic data, tumor characteristics, and operative
techniques were analyzed. Two different algorithms were lined up for comparison of the accuracy (Iogistic
regression and random forest model).

Result: The rate of intra operative CSF leak in the series was 24.6%. The risk factors were height of
tumor, hydrocephalus, previous surgery, secretory tumor, age, radiation treatment, sex, BMI, and attempt

to gross total resection. The logistic regression model was more accuracy than random forest model. (F1

score 0.43 VS 0.40)

Conclusion: This study was analyzed all the risk factors for CSF leakage after surgery via artificial
intelligence. This logistic regression model presents better F1 score and offers a valuable tool for prediction

of intraoperative CSF leakage after transsphenoidal surgery in pituitary tumor

Keywords: intraoperative CSF leakage, pituitary adenoma, transsphenoidal surgery, artificial intelligence
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Evaluation Metrics

Description

Sensitivity True Positive Rate (TPR) = When it's actually yes, how often does it predict yes?
True Positive Rate = True Positives
rue Positive Rate = True Positives + False Negatives
Fall-Out False Positive Rate (FPR) = When it's actually no, how often does it predict yes?
Faise Positive Rate = False Positives
alse Positive Rate = False Positives + True Negatives
ROC Curve Receiver Operating Characteristic Curve = Plot of Sensitivity (y-axis) against Fall-Out (x-axis) for
different thresholds
- Curve with higher Area Under Curve (AUC) has better performance
Precision When it predicts yes, how often is it correct?
Precision = True Positives
recision = True Positives + False Positives
Recall Same as Sensitivity or TPR

Precision-Recall Curve

Plot of Precision (y-axis) against Recall (x-axis) for different thresholds

- Curve with higher Area Under Curve (AUC) has better performance

F1-Score The weighted average of the precision and recall.
precision X recall
F1—Score=12 X ( — )
precision + recall
Accuracy

How often is the model correct?

True Positives + True Negatives
All Positives + All Negatives

Accuracy =




