

Thai Journal of Neurological Surgery

วารสารประจำสัปดาห์ด้วยศาสตร์ไทย

ปีที่ 14 ฉบับที่ 2 เมษายน-มิถุนายน 2566
Vol. 14 No. 2 April - June 2023

เจ้าของ : ราชวิทยาลัยประสาทศัลยแพทย์แห่งประเทศไทย

สำนักงาน : อาคารเฉลิมพระบารมี ๕๐ ปี
 เลขที่ 2 ซอยสุนย์วิจัย ถนนเพชรบุรีตัดใหม่ แขวงบางกะปิ
 เขตห้วยขวาง กรุงเทพฯ ๑๐๓๑๐
 โทรศัพท์ ๐๒-๗๑๔๗๙๙๖ โทรสาร ๐๒-๗๑๔๗๙๙๗

บรรณาธิการ : นายแพทย์ธีรพล วิทวิเวช

ออกแบบและพิมพ์:

สำนักพิมพ์กรุงเทพเวชสาร

Bangkok Medical Publisher Ltd. Part.

3/3 สุขุมวิท 49 แขวงคลองตันเหนือ เขตวัฒนา กรุงเทพ ๑๐๑๑๐

โทรศัพท์ ๐-๒๒๕๘-๗๙๕๔, ๐-๒๖๖๒-๔๓๔๗, โทรสาร ๐๒-๒๕๘-๗๙๕๔

E-mail: bkkmed@gmail.com

คณะกรรมการบริหารราชวิทยาลัยประสาทศัลยแพทย์แห่งประเทศไทย

อดีตประธานวิทยาลัยฯ

และราชวิทยาลัยฯ

นายแพทย์วิทัญญู ปรัชญานันท์

นายแพทย์ช่อเพี้ยว เตโชพาร

นายแพทย์ศุภโชค จิตรวาณิช

นายแพทย์นครชัย เผื่อนปฐุณ

นายแพทย์ไชยวิทย์ ธนาไพบูล

นายแพทย์สิริรุจัน ศกุลณัมวรรค

นายแพทย์ยอดรัก ประเสริฐ

นายแพทย์เกรียงศักดิ์ ลิมพัสดาน

ประธานราชวิทยาลัยฯ

นายแพทย์รุ่งศักดิ์ ศิรawanวัฒน์

ผู้รังสรรค์ตำแหน่งประธานฯ

นายแพทย์กุลพัฒน์ วีรสาร

เลขานิการ

นายแพทย์ศักดิ์ชัย แซ่เส้ง

เหรัญญิก

นายแพทย์เอก หังสสุต

นายทะเบียน

นายแพทย์อำนวย กิจควรดี

ปฏิคม

นายแพทย์พีระ นาคลวอ

กรรมการวิชาการ

นายแพทย์กฤชณพันธ์ บุณยะรัตเวช

กรรมการวารสาร

นายแพทย์อีรพล วิทอิเวช

กรรมการสมาชิกสัมพันธ์

นายแพทย์ประดิษฐ์ ไชยบุตร

ผู้แทนกลุ่มฯ ประสาทศัลยแพทย์ใน

ราชวิทยาลัยศัลยแพทย์แห่งประเทศไทย

นายแพทย์กุลพัฒน์ วีรสาร

กรรมการกลาง

นายแพทย์ติลก ตันทองทิพย์

นายแพทย์ณรงค์พงศ์ โล้วพุกมณี

นายแพทย์ณัฐพล เลิศการค้าสุข

นายแพทย์ธัญญา นรเศรษฐ์อุดา

นายแพทย์อีระ ตั้งวิริยะไพบูลย์

นายแพทย์วิบูลย์ เตชะโกศล

Executive Committee 2022–2024

Past-President

Watanyoo Prachayanont, M.D.

Chopeow Taecholarn, M.D.

Supachoke Chitvanich, M.D.

Nakornchai Phuenpathom, M.D.

Chaiwit Thanapaisal, M.D.

Siraruj Sakoolnamarka, M.D.

Yodruk Prasert, M.D.

Kriengsak Limpastan, M.D.

President

Rungsak Siwanuwatn, M.D.

President-elect

Kullapat Veerasarn, M.D.

Secretary General

Sakchai Saeheng, M.D.

Treasurer

Ake Hansasuta, M.D.

Registrar

Amnat Kitkhuandee, M.D.

Social Function

Peera Narkla-or, M.D.

Scientific Chairman

Krishnapundha Bunyaratavej, M.D.

Editor of Journal

Theerapol Witthiwej, M.D.

Relationship Member

Pradit Chaiyabud, M.D.

Representative Neurosurgeon

in RCST

Kullapat Veerasarn, M.D.

Board of Directors

Dilok Tantongtip, M.D.

Narongpong Lowprukmanee, M.D.

Nuttapon Lertkankasuk, M.D.

Thunya Norasetthada, M.D.

Teera Tangviriyapaiboon, M.D.

Vibul Techakosol, M.D.

กองบรรณาธิการ

นายแพทย์กรรณรักษ์ อุรัสยะหันท์
 นายแพทย์กฤชณ พันธ์ บุณยะรัตเวช
 นายแพทย์กิตติพร ศรีออมรัตนกุล
 นายแพทย์กุลพัฒน์ วีรสาร
 นายแพทย์จิระพงศ์ วงศ์ฟัก
 แพทย์หญิงจิระพร ออมร์ฟ้า
 นายแพทย์ชิน ทวีสมบูรณ์ญาติ
 นายแพทย์ชุมพล เจตจำรงค์
 นายแพทย์ชิตติวัฒน์ ตันศิริสิทธิกุล
 นายแพทย์ชัยวิทย์ ธนาไพบูล
 นายแพทย์จูปันต์ จันทราภาส
 นายแพทย์จูกร เอี้ยวสกุล
 นายแพทย์ณัฐพล เลิศการค้าสุข
 นายแพทย์ณัฐวุฒิ นิลเจียรสนกุล
 นายแพทย์ดิลก ตันทองทิพย์
 นายแพทย์ธนัช วนิยะพงศ์
 นายแพทย์ธาราณ์ ตันธนาริป
 นายแพทย์ธีรพล วิทอิเวช
 นายแพทย์ธีระ ตั้งวิริยะไพบูลย์
 นายแพทย์ธีระเดช ศรีกิจวิไลกุล
 นายแพทย์บรรพต สิทธินามสุวรรณ

นายแพทย์ปักกุณณ์ จิตตภิรัมย์ศักดิ์
 นายแพทย์ปิยะณัฐ หัวสวัสดิ์วงศ์
 นายแพทย์พิชเยนทร์ ดวงทองผล
 นายแพทย์พิรพงษ์ มนต์รีวิวัฒนชัย
 นายแพทย์ภัทรวิทย์ รักษ์กุล
 นายแพทย์ภาณุ บุญต่อเติม
 นายแพทย์อนุกูล แก้วบริสุทธิ์สกุล
 นายแพทย์อนุชิต พันธุ์คงทรัพย์
 นายแพทย์อัคคพงษ์ นิติสิงห์
 นายแพทย์อัตตพล บุญเกิด
 นายแพทย์อิทธิชัย ศักดิ์อรุณชัย
 แพทย์หญิงอินทิรา จำลาลีชิต
 นายแพทย์อุดม บัวราภรณ์
 นายแพทย์เอก หังสูตร

ผู้ทรงคุณวุฒิ

นายแพทย์ทิตพงษ์ ส่งแสง
 แพทย์หญิงพรจิรา ปริวัชราภุกุล
 นายแพทย์พรพรหม เมืองแม่น
 แพทย์หญิงมาเน รักษาเกียรติศักดิ์

คำแนะนำในการส่งบทความ (Information for Authors)

วารสารประสาทศัลยศาสตร์ ใช้ชื่อภาษาอังกฤษว่า “Neurological Surgery” เป็นสื่อทางการของวิทยาลัยประสาทศัลยศาสตร์แห่งประเทศไทย พิมพ์เผยแพร่แก่สมาชิกของวิทยาลัยฯ กำหนดออกทุก 3 เดือน โดยมีวัตถุประสงค์เพื่อ:

1. นำเสนอผลงานวิจัย ข้อเขียน บทความตลอดจนความคิดเห็นเชิงวิชาการทางประสาทศัลยศาสตร์และสาขาที่เกี่ยวข้อง

2. เป็นสื่อกลางใช้แลกเปลี่ยนความคิดเห็นต่างๆ ระหว่างสมาชิกของวิทยาลัยฯ

3. สนับสนุนกิจกรรมการศึกษาต่อเนื่องด้วยตนเองของสมาชิก

เพื่อให้บรรลุวัตถุประสงค์ดังกล่าว วารสารประสาทศัลยศาสตร์ ยินดีรับบทความเป็นสื่อกลางระหว่างสมาชิกเพิ่มพูนความรู้ทางวิชาการแก่สมาชิกและวิชาการสาขาอื่นที่เกี่ยวข้อง บทความที่ส่งมาต้องไม่เคยพิมพ์เผยแพร่มา ก่อน ข้อคิดเห็นในบทความ เนื้อหา และองค์ประกอบของเนื้อหาเป็นความรับผิดชอบของผู้เขียนบทความนั้น วิทยาลัยประสาทศัลยศาสตร์แห่งประเทศไทยไม่จำเป็นต้องเห็นพ้องด้วย และคณะกรรมการขอสงวนสิทธิ์ในการตรวจทานแก้ไขและพิจารณาตีพิมพ์โดยมีหลักเกณฑ์ดังนี้

1. ประเภทบทความ

นิพนธ์ต้นฉบับ (Original articles)

เป็นรายงานผลงานวิจัย ค้นคว้า การเขียนบทความนิพนธ์ต้นฉบับให้ล้ำดับเนื้อหาดังต่อไปนี้

1. ชื่อเรื่อง (title), ผู้นิพนธ์ (author and co - authors), สถาบันที่ผู้นิพนธ์ปฏิบัติงาน (institute) และแหล่งทุนสนับสนุน (ถ้ามี)

2. บทคัดย่อ (abstract) ทั้งภาษาไทยและภาษาอังกฤษ

3. คำสำคัญ (key word) สำหรับจัดทำดังนี้ ระบุไว้ใต้บทคัดย่อหรือ abstract

4. บทนำ (introduction)

5. วัสดุและวิธีการ (materials and methods)

6. ผลการศึกษา (results)

7. วิจารณ์ (discussions)

8. สรุป (conclusions)

9. เอกสารอ้างอิง (references)

บทความปริทัศน์ (review articles)

ควรเป็นบทความที่ให้ความรู้ใหม่ รวบรวมสิ่งตรวจพบใหม่ หรือเรื่องที่นำเสนอให้สามารถนำไปประยุกต์ใช้ได้ หรือเป็นบทความวิเคราะห์โรค หรือ วิจารณ์สถานการณ์การเกิดโรค ประกอบด้วย

1. บทนำ (introduction)
2. วัตถุประสงค์ (objective)
3. เนื้อหาวิชา (content)
4. วิจารณ์ (discussions)
5. สรุป (conclusions)
6. เอกสารอ้างอิง (references)

รายงานผู้ป่วย (care report)

เขียนได้ 2 แบบ คือ รายงานอย่างละเอียด หรือสั้นๆ ประกอบด้วย บทนำ รายงานผู้ป่วยวิจารณ์อาการ ทางคลินิกผลตรวจทางห้องปฏิบัติการ เสนอ ข้อคิดเห็นอย่างมีขอบเขต สรุป บทคัดย่อ แนะนำให้มีภาษาไทย และภาษาอังกฤษ

บทความพิเศษ (special articles)

เขียนจากประสบการณ์ แสดงความคิดเห็น หรือจากการค้นคว้า

เทคนิคและเครื่องมืออุปกรณ์ (technique & instrumentation)

เพื่อเสนอเทคนิค หรืออุปกรณ์ใหม่ โดยจะต้องบอกข้อบ่งชี้ และผลการรักษาด้วย

จดหมายถึงบรรณาธิการ (letter to the editor)

เพื่อให้ความคิดเห็นเกี่ยวกับบทความที่ตีพิมพ์ไปแล้ว

2. เอกสารอ้างอิง (Reference)

การอ้างอิงใช้ตาม Vancouver Style หรือ Uniform Requirement for Manuscripts Submitted to Biomedical Journals, 5th edition ค.ศ. 1997 โดยใส่ตัวเลขกระดับในเนื้อเรื่องตรงบริเวณที่อ้างอิง เรียงตามลำดับก่อนหลัง การอ้างอิง แล้วจึงนำเอกสารที่ถูกย้างอิงมาเรียงตามลำดับการอ้างอิงท้ายบทความ บทความที่มีผู้นิพนธ์ไม่เกิน 6 คน ให้ใส่ชื่อผู้นิพนธ์ทั้งหมด ถ้าเกิน 6 คน ให้ใส่ 6 คน และตามด้วย “et al.” หรือ “และคณะ”

การอ้างอิงเอกสาร

Ratanalert S, Chompikul J, Hirunpat S, Pheunpathom N. Prognosis of severe head injury: an experience in Thailand. Br J Neurosurg 2002; 16(5):487-93.

การอ้างอิงวารสาร online

Sanders GD, Bayoumi AM, Holodniy M, Owens DK. Cost-effectiveness of HIV screening in patients older than 55 year of age. Ann Intern Med [cited 2008 Oct 7]:148(2). Available from:<http://www.annals.org/cgi/reprint/148/12/889.pdf>

การอ้างอิงจาก World Wide Web

National Institute for Health and Clinical Excellence. Head injury triage, assessment, investigation and early management of head injury in infants, children and adults. Clinical guideline June 2003. <http://www.nice.org.uk/guidance/CG4/?c=91522> (accessed 23 November 2006).

การอ้างอิงหนังสือ หรือตำรา

ชื่อผู้เขียน. ชื่อหนังสือ. ครั้งที่พิมพ์ ชื่อเมือง (ใช้ชื่อเมืองชื่อเดียว): ชื่อโรงพิมพ์ ปี ค.ศ. ตั้งอย่าง : Greenberg MS. Handbook of Neurosurgery. New York: Thieme: 2001.

บทในหนังสือหรือตำรา

ชื่อผู้เขียน. ชื่อเรื่อง. ใน: ชื่อบรรณาธิการ. ชื่อหนังสือ. ครั้งที่พิมพ์ ชื่อเมือง. ชื่อโรงพิมพ์ ปี ค.ศ.: หน้าแรก-หน้าสุดท้าย

ตัวอย่าง: Y. Matsushima. Moyamoya disease. In: Youmans JR. editor. Neurological surgery. 4th ed. Philadelphia: W.B. Saunders; 1996: p. 1202-222.

3. การพิมพ์และการส่งต้นฉบับ

- ให้ส่งต้นฉบับที่จะลงตีพิมพ์ โดยโปรแกรมที่ใช้พิมพ์ต้องเป็น Microsoft Word. Font Angsana New ขนาดตัวอักษร 16 พร้อมไฟล์ประกอบรูปภาพ และกราฟ ไปยัง e-mail ของ นางสาวปิยนาฏ สีระแก้ว E-mail: piyanat_09@gmail.com

- การพิมพ์เนื้อเรื่องให้ใส่เลขหน้ากำกับทุกหน้าที่มุ่งความต้านทาน

หน้าแรก หรือ title page เขียนเป็นภาษาไทยและอังกฤษ ประกอบด้วย

- (1) ชื่อเรื่อง
- (2) ชื่อ ศกุลของผู้เขียน คุณวุฒิ โดยใช้ตัวอักษรของปริญญาหรือคุณวุฒิที่เป็นสากล (กรณีที่ผู้นิพิธ์มีหลายคนให้ระบุทุกคน)
- (3) สถานที่ทำงาน
- (4) ชื่อเรื่องอย่างย่อ หรือ running title (ความยาวไม่เกิน 40 ตัวอักษร)

4. การรับเรื่องตีพิมพ์

หากต้นฉบับที่เสนอมาได้รับการพิจารณาให้นำมาลงตีพิมพ์ ทางสำนักงานจะแจ้งให้เจ้าของบทความทราบ พร้อมทั้งจัดส่งฉบับร่างให้ผู้เขียนตรวจสอบและขอคืนตามกำหนดเวลา

5. สถานที่ติดต่อ

คุณเพ็ญศรี ณัชวงษา

อาคารเฉลิมพระบารมี ๕๐ ปี

เลขที่ 2 ซอยศูนย์วิจัย ถนนเพชรบุรีตัดใหม่ แขวงบางกะปิ เขตห้วยขวาง กรุงเทพฯ 10310
โทรศัพท์ 02-7181 996 โทรสาร 02-7181 997

E-mail: pensriy@gmail.com

สารบัญ

บรรณานิการ

Research Article

- ▲ **Endoscopic Transsphenoidal Surgery for Pituitary Tumor in Thailand: A review..... 47**
Krittapon Kongkasem, MD.
- ▲ **การศึกษาผลการควบคุมการบั้กและความปลอดภัยของยาฟีโนโตรอิน(ซีอสามัญ) ในผู้ป่วยบาดเจ็บทางสมอง 55**
Seizure Control Effect and Safety of Generic Intravenous Phenytoin Sodium in Patients with Traumatic Brain Injury
กัมปนาท หัสดินดา พ.บ., วุฒิบัตรประจำวิชาศัลยศาสตร์
- ▲ **Factors Associated with Health-Related Quality of Life in Subarachnoid Hemorrhage 63 in Southern Thailand**
Natthanee Pisitthaworakul, M.N.S.
Suphawan Saetan, B.N.S.
Sompit Thongma, B.N.S.
Sukanya Kongchoo, B.N.S.
Jiamjit Kaewsuk, B.N.S.
Busakorn Puntachit, B.N.S.
Phaisit Tabtiang, B.N.S.

Endoscopic Transsphenoidal Surgery for Pituitary Tumor in Thailand: A review

Krittapon Kongkasem, MD.

Neurosurgeon, Neurosurgery Unit, Department of Surgery, Saraburi Hospital

Abstract

Transsphenoidal surgery for pituitary tumor (PT) has been performed for many decades. Recent technology and endoscopic-related tools' refinement have allowed more complete resection yielding longer disease-free survival, if not a cure, while minimizing surgical morbidity/mortality. This novel surgical treatment has been in Thailand for approximately 20 years. The author reviewed published articles that were from centers in our country to describe the current status of endoscopic transsphenoidal surgery (eTSS) for PT in Thailand. There were a handful of sizeable case series that had been reported from prominent institutions in our country. These articles described various aspects of this procedure that would benefit young neurosurgeons to envision the next chapter of eTSS for PT in our part of the world. In addition, other specialties also contributed to invaluable publication related to this subject. Last, but not least, extraordinary case reports, with unique presentation, radiographic or pathology, that were not as uncommon as one would have imagined, were paramount to the pituitary disease community.

Keywords: endoscopic, transsphenoidal, pituitary, Thailand

บทดัดย่อ

การผ่าตัดเนื้องอกต่อมใต้สมองผ่านโพรงอากาศสfinoidด้วยกล้องเอ็นโดสโคปในประเทศไทย ปัจจุบัน

กฤตพล คงเกษม พ.บ., ว.ว.ประจำเดือนวิชาการ
หน่วยศัลยกรรมประสาท กลุ่มงานศัลยกรรม โรงพยาบาลสระบุรี

การผ่าตัดเนื้องอกต่อมใต้สมองผ่านโพรงจมูกมีมานานหลายสิบปีแล้ว ความก้าวหน้าทางเทคโนโลยีที่ดีขึ้นเอื้อให้เกิดพัฒนาการผ่าตัดวิธีนี้โดยใช้กล้องเอ็นโดสโคปซึ่งในประเทศไทยมีการผ่าตัดเช่นนี้มา 20 ปีแล้ว บทความปริทัศน์นี้ได้รวบรวมหลักฐานเชิงประจักษ์จากหลายสถาบันในประเทศไทยที่เกี่ยวข้องกับการใช้กล้องเอ็นโดสโคปผ่าตัดเนื้องอกต่อมใต้สมองผ่านโพรงจมูก ผู้นิพนธ์มีความประสงค์ที่จะใช้บทความนี้เพื่อเป็นข้อมูลสำคัญเชิงวิชาการให้กับกลุ่มเป้าหมายหลักคือประจำเดือนวิชาการผ่าตัดผู้ป่วยโรคนี้ รวมทั้งให้เห็นประโยชน์ที่เกิดจากความร่วมมือหลากหลายสาขาวิชาที่เกี่ยวข้อง โดยมีเป้าหมายเพื่อประโยชน์สูงสุดต่อการดูแลผู้ป่วยต่อมใต้สมองไทยและพัฒนาวงการประจำเดือนวิชาการในประเทศไทยก้าวต่อไปสู่สากล

คำสำคัญ: เอ็นโดสโคป, ผ่านโพรงอากาศสfinoid, ต่อมใต้สมอง, ประเทศไทย

Introduction

Pituitary tumor (PT) is one of the most frequently encountered neoplasms in neurosurgical practice. Surgical excision of PT remains the powerhouse with regards to histological diagnosis and symptom alleviation for affected patients. The most common operation for PT is performed via transsphenoidal route that directly attacks the tumor with little manipulation of the optic apparatus or the brain. For several decades, microscopic transsphenoidal surgery (mTSS) had been the standard of care and the treatment of choice for PT. It significantly enhances visualization for transsphenoidal access compared to the original use of headlight described by pioneers of this procedure.¹

Despite abandoning the utilization of endoscopy in

transsphenoidal access, it was first described by Guiot in 1963. In the mid-1970, few centers reported the use of endoscopy as an “adjunct” to mTSS.^{1,2} Almost 20 years thereafter, pure endoscopic use for transsphenoidal surgery began with a handful of articles from Europe and North America.² Over time, endoscopy has shown superior outcomes compared to mTSS.^{3,4,5,6} In Thailand, the first report of mTSS in Thailand was narrated by Phonprasert et al in 1980.⁷ Yet, it was not until after the turn of 21st century that the endoscopic transsphenoidal surgery (eTSS) began in our country. The author reviewed the literature related to eTSS from Thailand to provide current looks of the procedure.

Objective

Because of the increasing trend of eTSS for PT in our country as well as worldwide, it is the author's goal to gather publication from Thailand that were related to eTSS for PT. This review ought to give our neurosurgeons some insight for the nowadays status. In addition, it should be worthwhile if this article can inspire and encourage our young colleagues who wish to excel in this surgical procedure for the benefit of our nation for generations to come.

Methods

The author performed a peer-reviewed literature search, up to April 30, 2023, via Pubmed, Scopus, Ovid Medline database, Cochrane library and Google Scholar for keywords of "transsphenoidal", "endoscopic" and "pituitary tumor". Only publication written by Thai institutes, that were based on results from Thai patients, were included in this review. Articles without specific mentioning of eTSS for PT were excluded except for those from institutes where it had been known to perform this procedure during the period of their investigations.

Results

There were 22 published articles included for our review. Nine studies were retrospective cohorts of pure eTSS and 3 articles were results from the mixtures of eTSS and mTSS for PT. Three prospectively conducted researches were identified. Highlights or summary from the publication are narrated in the review section below. Additionally, there were 7 case reports of uncommon or unique features of PT.

Contents

Endoscopic Transsphenoidal Surgery for Pituitary Tumor in Thailand: A review

At the initial stage, utilizing primitive tools and unacquainted anatomy of sinonasal corridor to neurosurgeons, eTSS was quite difficult. Therefore, its early views, by some, were rather skeptical with controversial issues such as limited maneuverability into the deep and narrow corridor or difficulty obtaining hemostasis.⁸ In 2014, a report comparing eTSS (n = 38) with key hole supraorbital craniotomy (n = 92) for PT observed more frequent complications in the eTSS group. Notwithstanding, the authors admitted that the lack of experience could have played an important role in this finding.⁹ The effect of a learning curve of this technically demanding surgery was reiterated by another cohort of 220 eTSS for PT. Apart from utilizing sophisticated and specifically-designed endoscopic equipment, this article demonstrated that binostripl access yielded favorable results, i.e., higher extent of resection (EOR) and less cerebrospinal (CSF) leakage, than the mononostril entry.¹⁰ The same institute also reported the clinical results from an extracapsular dissection using "cottonswab" for PT. Their outcomes, from 100 patients, were in line with other published global data.¹¹ A recent article from Thammasat University showed better results by eTSS (n=138) for PT over mTSS (n=72) with similar rates of complications. Less blood loss, higher EOR and shorter hospital stay in the eTSS cohort was observed.¹² Another study from Prasat Neurological Institute examined the pituitary hormones after eTSS for PT. Of their 126 non-functioning PTs, eleven

patients had permanent diabetes insipidus after surgery. Out of 83 patients with intact preoperative pituitary hormones, two incidences of new postoperative adrenocortical hormone deficit (2.14%) and 3 incidences of thyroidal hormone deficit (3.61%) were found after surgical resection of PTs. Six of 45 patients (13.33%) had normalization of hormones

that they initially lacked prior to eTSS. (13) Worth mentioning, these researches were all conducted in retrospective fashion that one could reasonably postulate a certain degree of selection bias as the possible factor resulting in various eTSS outcomes in patients with PTs. Table 1 summarizes eTSS studies in Thailand with at least 100 cases.

Table 1 Summary of endoscopic transsphenoidal surgery (eTSS) for pituitary tumor (PT) case series from hospitals in Thailand with at least 100 cases. (mTSS = microscopic transsphenoidal surgery, N = Numbers of eTSS cases)

	N	Objectives of the study	Important messages from the study
Hansasuta et al ¹⁰ (2018)	220	Effects of dedicated endoscopic instruments and bi- vs mononostril access to outcomes	Utilizing advanced endoscopic tools and binostril approach were associated with better outcomes.
Skulsampaopol et al ¹¹ (2019)	100	Results by using cottonswab for extracapsular dissection	Utilizing cottonswab for extracapsular dissection was safe and simple. Comparable results with worldwide series.
Noiphithak et al ¹² (2021)	138	Compare eTSS with mTSS	eTSS had better outcomes than mTSS
Keandoungchun et al ¹³ (2021)	126	Postoperative hormone outcome for non-functioning PT removal	Of the 83 intact preoperative hormones, five new deficiencies were observed. Of the 45 cases with preoperatively deficient hormones, six had normalization after eTSS

Other retrospective articles, with fewer than 100 cases of eTSS, had contributions to our country's knowledge regarding other facets of PT outcomes by this procedure. Thiabha et al observed two of 11 patients, after eTSS, whose residual PTs were discovered by intraoperative magnetic resonance imaging (MRI) despite surgeon's conclusion of complete PT resection. This report, again, had echoed the value of intraoperative MRI.¹⁴ Wongsirisuwan et al found that, from 39 cases undergoing eTSS, the PT to pons ratio, in T2-weighted series of the preoperative MRI, was an indicator of satisfactory tumor removal.¹⁵ A

Study from Songklanagarind university hospital retrospectively examined 51 patients with acromegaly. Among them, either mTSS (n = 21) or eTSS (n = 30) for PTs were performed. While the micro- or endoscopic technique did not correlate with the success of disease remission, the high preoperative insulin-like growth factor 1 index ≥ 2.5 and high-grade cavernous sinus invasion were associated with non-remission.¹⁶ The same institute reported their, mixed mTSS (n=36) and eTSS (n=62), outcomes for the treatment of pituitary apoplexy. Lower preoperative prolactin level and inferior invasion by higher

Wilson-Hardy grade were associated with poor recovery of hypopituitarism.¹⁷ Ganokroj et al performed an analysis of growth hormone producing tumors although the authors did not specifically mention how many eTSS were executed in their cohort. However, it was known that this procedure was present for a certain duration, in the same hospital, of the study. With almost 70% of cases in remission, their treatment results were in line with global data.¹⁸ Another article, from ophthalmology perspective, illustrated that the preoperative peripapillary retinal nerve fiber layer thickness correlated with postoperative visual functions after eTSS.¹⁹

With regard to prospective research, there was one study measuring copeptin level after hypothalamic-pituitary surgery, including 69 eTSS. It was discovered that the low copeptin level, within the first postoperative day, was related to the occurrence of diabetes insipidus.²⁰ Another prospective series from Khon Kaen University analyzed 44 patients' voice quality before and after eTSS for PT. No significant change of the subjective and objective data, pre- vs post-surgery, from these cases was observed.²¹ A recent prospective randomized trial by anesthesiology group with specific aim for medication used during transsphenoidal surgery for PT. Despite not mentioning how many eTSS were performed in their cohorts of 80 cases, Dexmedetomidine infusion of 0.2 and 0.5 micrograms per kilogram per hour showed no different blood loss or hemodynamics. Shorter operating time and hypotension were observed in the higher dose group.²²

Additionally, with many referrals to those centers, there had been unique presentations, or pathologies, of the pituitary conditions. Examples of

these rarely encountered situations were metastases to pituitary gland^{23,24} or metastases to PT^{25, 26}, pituitary tuberculoma²⁷, CSF leakage in an untreated non-functioning PT²⁸ or a ruptured aneurysm mimicking pituitary apoplexy.²⁹

Discussions

The first case of eTSS for PT in Thailand was performed by Dr.Thirasak Puen-ngarm at Prasat Neurological Institute in 2003. (personal communication) Since then, the procedure has been popularized among Thai neurosurgeons, noticeable by the growing numbers of published documents as described in the review section. Owing to the evolution of advanced endoscopic tools as well as proper training from oversea or local mentors, this particular surgical skill for our neurosurgeons had been developed. Too, attending eTSS lectures, in combination with cadaver dissection workshops, or symposiums by invited foreign and local speakers greatly contributed to the popularization of the procedure. In addition to gaining hands-on experience and skill by more cases of eTSS for PT, enthusiastic neurosurgeons should thoroughly explore each cited article, into its individual details, in this review. Tremendous evidence-based information from these centers in Thailand should direct the path for future development in this field. As evident by developed nations, high volume pituitary centers have been associated with better outcomes and relatively lower complications.³⁰ Therefore, the concept of Pituitary Center of Excellence (PTCOE) is essential for the maximal benefit of patients. The PTCOE should be an institute, where teamwork consists of interdisciplinary collaboration, with sufficient case load to maintain neurosurgeons' necessary skill

for eTSS. In addition, a multispecialty approach to pituitary disease is paramount for residency and/or fellowship training, development of new protocols or guideline elaborations.^{31,32,33}

To date, most of the eTSS-related literature from our country have been retrospective studies. However, larger cohorts can be had with collaborations. The multidisciplinary team-effort for the treatment of PT offers ample research opportunities for other specialties. With significant caseload in these tertiary centers for pituitary disease, data are abundant for meaningful prospective investigations. Years to come, the author is confident that there would be more and more prospectively-conducted studies, from prominent institutes in Thailand, with new and important take-home messages by eTSS for PT. It is the author's hope that this review should encourage younger neurosurgeons to advance their education and to acquire necessary skill for the eTSS for the full benefit of our patients.

Conclusions

The insights of the current situation of eTSS for PT in Thailand is furnished by this review. This information should encourage the new-generation of keen neurosurgeons to develop their skill to continue the tremendous effort by our mentors to the point that we, as a nation, reach the comparable standard as developed countries. Last but not least, the author advocates systematic knowledge management, or national pituitary registry, of these eloquent data. This process will enable various aspects of researches to demonstrate our results that, one day, will be on par with international standards.

References

1. Liu JK, Das K, Weiss MH, Laws ER, Jr., Couldwell WT. The history and evolution of transsphenoidal surgery. *J Neurosurg.* 2001;95(6):1083-96.
2. Doglietto F, Prevedello DM, Jane JA, Jr., Han J, Laws ER, Jr. Brief history of endoscopic transsphenoidal surgery--from Philipp Bozzini to the First World Congress of Endoscopic Skull Base Surgery. *Neurosurg Focus.* 2005;19(6):E3.
3. Phan K, Xu J, Reddy R, Kalakoti P, Nanda A, Fairhall J. Endoscopic Endonasal versus Microsurgical Transsphenoidal Approach for Growth Hormone-Secreting Pituitary Adenomas-Systematic Review and Meta-Analysis. *World Neurosurg.* 2017;97:398-406.
4. Broersen LHA, Biermasz NR, van Furth WR, de Vries F, Verstegen MJT, Dekkers OM, et al. Endoscopic vs. microscopic transsphenoidal surgery for Cushing's disease: a systematic review and meta-analysis. *Pituitary.* 2018;21(5):524-34.
5. Yu SY, Du Q, Yao SY, Zhang KN, Wang J, Zhu Z, et al. Outcomes of endoscopic and microscopic transsphenoidal surgery on non-functioning pituitary adenomas: a systematic review and meta-analysis. *J Cell Mol Med.* 2018;22(3):2023-7.
6. Guo S, Wang Z, Kang X, Xin W, Li X. A Meta-Analysis of Endoscopic vs. Microscopic Transsphenoidal Surgery for Non-functioning and Functioning Pituitary Adenomas: Comparisons of Efficacy and Safety. *Front Neurol.* 2021;12:614382.
7. Phonprasert C, O'charoen S, Sridama V. Transsphenoidal approach for pituitary tumor. *Thai J Surg.* 1980;1(2):33-42.
8. Wongsirisuwan M. What is the better minimally invasive surgery in pituitary surgery: endoscopic endonasal transsphenoidal approach or keyhole supraorbital approach? *J Med Assoc Thai.* 2011;94(7):888-95.
9. Wongsirisuwan M, Karnchanapandh K. Comparative outcomes of keyhole supraorbital approach (KSA) and endonasal endoscopic transsphenoidal approach (EETA) in pituitary surgery. *J Med Assoc Thai.*

2014;97(4):386-92.

10. Hansasuta A, Pokanan S, Punyawai P, Mahattanakul W. Evolution of Technique in Endoscopic Trans-sphenoidal Surgery for Pituitary Adenoma: A Single Institution Experience from 220 Procedures. *Cureus*. 2018;10(1):e2010.

11. Skulsampaopol J, Hansasuta A. Outcomes of the Endoscopic Transsphenoidal Surgery for Resection of Pituitary Adenomas Utilizing Extracapsular Dissection Technique with a Cotton Swab. *Asian J Neurosurg*. 2019;14(4):1089-94.

12. Noiphithak R, Nimmannitya P, Tantongtip D, San-pawithayakul K, Thitiwichienlert S, Punyarat P, et al. Comparison of Endoscopic and Microscopic Trans-sphenoidal Approaches for the Resection of Pituitary Adenoma. *Arch Neurosci*. 2021;8(4):e117339.

13. Keandoungchun P, Tirakotai W, Phinthusophon A, Wattanasen Y, Masayaanon P, Takathaweephon S. Pituitary Hormonal Status after Endoscopic Endonasal Transsphenoidal Removal of Nonfunctioning Pituitary Adenoma: 5 years' Experience in a Single Center. *Asian J Neurosurg*. 2021;16(1):62-6.

14. Thiabpha A, Hansasuta A. Initial Experience with Ultra-Low-Field Intraoperative Magnetic Resonance Imaging in Endoscopic Endonasal Transsphenoidal Surgery for Pituitary Adenoma at Ramathibodi Hospital. *J Med Assoc Thai*. 2016;99(6):S30-8.

15. Wongsirisuwan M, Chenkhumwongse A. Predictive Value of Preoperative MRI Sequences in Successful Endoscopic Endonasal Transsphenoidal Pituitary Macroadenoma Removal. *J Med Assoc Thai*. 2019;102(12):1317-26.

16. Taweesomboonyat C, Oearsakul T. Prognostic Factors of Acromegalic Patients with Growth Hormone-Secreting Pituitary Adenoma After Transsphenoidal Surgery. *World Neurosurgery*. 2021;146:e1360-e6.

17. Taweesomboonyat C, Oearsakul T. Factors Predicting Neuroendocrine Recovery Following Transsphenoidal Surgery in Pituitary Apoplexy Patients. *World Neurosurgery*. 2022;159:e40-e7.

18. Ganokroj P, Sunthornyoithin S, Siwanuwatn R, Chan-tra K, Buranasupkajorn P, Suwanwalaikorn S, et al. Clinical characteristics and treatment outcomes in acromegaly, a retrospective single-center case series from Thailand. *Pan Afr Med J*. 2021;40:31.

19. Thammakumpee K, Buddawong J, Vanikieti K, Jindahra P, Padungkiatsagul T. Preoperative Peripapillary Retinal Nerve Fiber Layer Thickness as the Prognostic Factor of Postoperative Visual Functions After Endoscopic Transsphenoidal Surgery for Pituitary Adenoma. *Clin Ophthalmol*. 2022;16:4191-8.

20. Vanasuntorn A, Hansasuta A, Chailurkit LO, Sriphrapradang C. Postoperative Copeptin as a Biomarker for Development of Diabetes Insipidus Following Hypothalamic-Pituitary Surgery. *Endocr Pract*. 2021;27(5):463-70.

21. Kasemsiri P, Duangthongphon P, Prathanee B, Thongrong C. Nasal resonance changes after endoscopic endonasal transsphenoidal skull base surgery: Analysis of voice quality. *Laryngoscope Investig Otolaryngol*. 2021;6(6):1275-82.

22. Muangman S, Raksakietisak M, Akavipat P, Rushatamukayanunt P, Akkaworakit S, Romkespikun N, et al. Effects of Low versus Intermediate Doses of Dexmedetomidine Infusion on Blood Loss, Hemodynamics, and Operative Time in Transsphenoidal Pituitary Tumor Removal: A Prospective Randomized Study. *J Neuroanaesth Crit Care*. 2023(First).

23. Ithimakin S, Suttinont P, Akewanlop C. Pituitary metastasis from renal cell carcinoma: a case report with literature review. *J Med Assoc Thai*. 2013;96 Suppl 2:S257-61.

24. Muninthorn W SA, Uttara-atthakorn A, Sriphrapadang C, Hansasuta A. Pituitary Metastasis of Papillary Thyroid Carcinoma: The First Case in Thailand. *J Med Assoc Thai*. 2021;104(12):140-6.

25. Thewjitcharoen Y, Shuangshoti S, Lerdlum S, Siwanuwatn R, Sunthornyoithin S. Colorectal Cancer Manifesting with Metastasis to Prolactinoma: Report of a Case Involving Symptoms Mimicking Pituitary Apoplexy. *Intern Med*. 2014;53(17):1965-9.

26. Skulsampaopol J, Klaisuban W, Hansasuta A. Colon

metastasis to residual pituitary macroadenoma causing accelerated growth: Case report and review of the literature. *Interdiscipl Neurosurg.* 2017;8:26-32.

27. Srisukh S, Tanpaibule T, Kiertiburanakul S, Boongird A, Wattanatranon D, Panyaping T, et al. Pituitary tuberculoma: A consideration in the differential diagnosis in a patient manifesting with pituitary apoplexy-like syndrome. *IDCases.* 2016;5:63-6.

28. Punyawai P KK, Tanjararak K, Hansasuta A. Untreated Non-Functioning Pituitary Adenoma Causing Spontaneous Cerebrospinal Fluid Rhinorrhea: A Case Report. *J Med Assoc Thai.* 2020;103(9):960-3.

29. Pattaravimonporn N, Muninthorn W, Sudsang T, Hansasuta A, Chiewchalermsri D, Sriprapradang C. Double jeopardy – pituitary apoplexy complicated by ruptured aneurysm of the internal carotid artery within an adenoma: a case report. *BMC Neurol.* 2022;22(1):463.

30. Li D, Johans S, Martin B, Cobb A, Kim M, Germanwala AV. Transsphenoidal Resection of Pituitary Tumors in the United States, 2009 to 2011: Effects of Hospital Volume on Postoperative Complications. *J Neurol Surg B Skull Base.* 2021;82(2):175-81.

31. Mortini P, Nocera G, Roncelli F, Losa M, Formenti AM, Giustina A. The optimal numerosity of the referral population of pituitary tumors centers of excellence (PTCOE): A surgical perspective. *Rev Endocr Metab Disord.* 2020;21(4):527-36.

32. Araujo-Castro M, Pascual-Corrales E, Martinez San Millan JS, Rebolleda G, Pian H, Ruz-Caracuel I, et al. Postoperative management of patients with pituitary tumors submitted to pituitary surgery. Experience of a Spanish Pituitary Tumor Center of Excellence. *Endocrine.* 2020;69(1):5-17.

33. Araujo-Castro M, Pascual-Corrales E, Martinez San Millan J, Rebolleda G, Pian H, Ruz-Caracuel I, et al. Multidisciplinary protocol of preoperative and surgical management of patients with pituitary tumors candidates to pituitary surgery. *Ann Endocrinol (Paris).* 2021;82(1):20-9.

การศึกษาผลการควบคุมการชักและความปลอดภัยของยาฟีโนโตอิน (ซีอสามัญ) ในผู้ป่วยบาดเจ็บทางสมอง

กัมปนาท หัสดินดา พ.บ., วุฒิบัตรประสาทศัลยศาสตร์
สาขาประสาทศัลยศาสตร์ แผนกศัลยกรรม โรงพยาบาลสมุทรปราการ

บทตัดย่อ

บทนำ: การชักหลังการบาดเจ็บทางสมองทำให้เกิดการบาดเจ็บชั้งของสมอง ซึ่งอาจนำไปสู่ความพิการหรือเสียชีวิต การให้ยาแก้ชักสามารถช่วยป้องกันการชักในช่วง 7 วันแรก (early post-traumatic seizure) โดยยาฟีโนโตอินเป็นยาที่ใช้มานานและมีผลป้องกันการชักได้ดี แต่เมื่อมีการเปลี่ยนการใช้ยาจากยาตันแบบมาเป็นยาซีอสามัญ จึงอาจมีความกังวลต่อผลการควบคุมการชัก

วัตถุประสงค์: เพื่อศึกษาผลการควบคุมการชัก ทั้งการรักษาและป้องกันและผลข้างเคียงที่เกิดขึ้นในผู้ป่วยที่มีอาการบาดเจ็บทางสมองของยาฟีโนโตอินซีอสามัญ

วิธีการศึกษา: เป็นการศึกษาข้อมูลหลัง (retrospective cohort study) เก็บข้อมูลจากเวชระเบียนของผู้ป่วยที่เข้ารับการรักษาตัวในโรงพยาบาลสมุทรปราการ ตั้งแต่วันที่ 1 มกราคม พ.ศ. 2564 ถึงวันที่ 31 ธันวาคม พ.ศ. 2564 โดยวิเคราะห์ข้อมูลจากเวชระเบียนผู้ป่วยเรื่องการชักหลังการบาดเจ็บทางสมองและผลข้างเคียงหลังได้ยาแก้ชักฟีโนโตอินซีอสามัญ

ผลการศึกษา: มีผู้ป่วย 3.80% ที่ได้รับยาแก้ชักและเกิดการชักภายใน 7 วัน โดยไม่มีผู้เกิดการชักหลังจาก 7 วัน ผลข้างเคียงที่พบในงานวิจัยนี้คือ อาการผื่น ห้องผูก และคลื่นไส้อาเจียน

สรุป: ยาแก้ชักฟีโนโตอินซีอสามัญที่มีการใช้ในโรงพยาบาลสมุทรปราการ มีผลในการควบคุมการชักในผู้ป่วยที่ได้รับการบาดเจ็บทางสมอง และไม่พบภาวะแทรกซ้อนที่รุนแรงในงานวิจัยนี้

คำสำคัญ: การชักหลังการบาดเจ็บทางสมอง, การบาดเจ็บทางสมอง, ยาแก้ชัก, ป้องกันชัก

Abstract

Seizure Control Effect and Safety of Generic Intravenous Phenytoin Sodium in Patients with Traumatic Brain Injury

Kampanart Hassajinda, MD

¹Division of Neurosurgery, Department of Surgery, Samutprakarn Hospital

Background: Antiepileptic drug can prevent seizure during the first 7 days (early post-traumatic seizure). Phenytoin is a drug that has been used for a long time and has anti-seizure effect. But when the drug has been changed from the original drug to the generic drug, there may be concerns about the seizure control effect.

Objective: This research is to study the effect of seizure control. Both treatment and prevention and side effects that occur in patients with traumatic brain injury on the generic phenytoin

Methods: Data was retrospectively collected from the medical records of the patients admitted to the hospital. (retrospective cohort study) from 1 January 2021 to 31 December 2021 at Samutprakan hospital. The data was collected about seizures after traumatic brain injury and side effects after taking the medication.

Results: 3.80% of patients who received the antiepileptic drug experienced seizure within 7 days, with no seizure occurring after 7 days. The side effects found in this study were rash, constipation, and nausea and vomiting.

Conclusions: In Samutprakan hospital, The generic phenytoin has effect in controlling seizure in patients with traumatic brain injury and no serious complication was found in this research.

Key words: post-traumatic seizure, traumatic brain injury, antiepileptic drug, seizure prevention

บทนำ (Introduction)

การบาดเจ็บทางสมองเป็นสาเหตุหนึ่งของความพิการและการเสียชีวิต ในปัจจุบันอุบัติการณ์เกิดขึ้นประมาณ 91-546 คน ต่อประชากร 100,000 คนต่อปี^{1,2} ซึ่งอุบัติการณ์มีแนวโน้มสูงขึ้น เพศชายพบได้บ่อยกว่าเพศหญิงและประเทศไทยที่มีอัตราการใช้รัฐนั้นและรัฐจักรยานนั้นที่สูงจะมีความเสี่ยงมากกว่า สามารถพบได้ตั้งแต่เด็กอายุน้อย กลุ่มวัยผู้ใหญ่ จนถึงผู้สูงอายุ¹ โดยสาเหตุหลักของการบาดเจ็บที่พบได้บ่อยคืออุบัติเหตุ交通事故 และการล้ม³

การชักเป็นอีกหนึ่งปัญหาที่พบได้หลังการบาดเจ็บทางสมองสามารถพบได้ตั้งแต่ 4-53%⁴ โดยความ

เสี่ยงต่อการเกิดการชักมักสัมพันธ์กับประเภทและความรุนแรงของการบาดเจ็บ เช่นการมีเลือดออกภายในกะโหลกศีรษะ กะโหลกศีรษะยุบ การบาดเจ็บที่เกิดขึ้นบริเวณใต้เยื่อหุ้มสมองลงมา การบาดเจ็บที่มีความผิดปกติของระบบประสาท หรือทำให้ระดับความรู้สึกตัวของผู้ป่วยลดลง⁵⁻⁷ สามารถแบ่งกลุ่มได้เป็นการชักที่เกิดขึ้นในช่วงต้นคือภายใน 7 วันแรก (early post-traumatic seizure) และการชักที่เกิดขึ้นในช่วงหลังคือหลังจาก 7 วัน (late post-traumatic seizure) อุบัติการณ์การเกิดการชักในช่วงต้นมีประมาณ 2.1-16.9% ในขณะที่การชักในช่วงหลังสามารถเกิดได้ตั้งแต่ 1.9% จนถึงมากกว่า 30% ผู้ที่เคยชักในช่วงหลังจะมีโอกาสชักซ้ำสูงถึง 86%

ในช่วง 2 ปี⁴ การซักทำให้เกิดการบาดเจ็บของสมองช้า อันเนื่องมาจากการเพิ่มของอัตราการใช้ออกซิเจนของเซลล์สมอง (cerebral metabolic rate of oxygen) การเพิ่มของความดันภายในกะโหลกศีรษะ สมองขาดออกซิเจนและการเพิ่มขึ้นของสารสื่อประสาทบางชนิด^{5,9} การใช้ยา กันชักในช่วง 7 วันแรก มีผลในการป้องกันการชักในช่วงต้นได้¹⁰

ฟีโน็โตอิน (phenytoin) เป็นยาที่ได้รับการใช้มาอย่างนานตั้งแต่ประมาณปี 1930 ออกฤทธิ์ป้องกันการชักโดยผ่านกลไกการยับยั้งการนำเข้าของโซเดียม (sodium channels) ในระบบประสาทที่มากเกิน ซึ่งกระตุ้นให้เกิดการชัก¹¹ โดยสามารถป้องกันการชักจากอุบัติเหตุในช่วง 7 วันแรกได้ถึง 73% อย่างไรก็ตามไม่ได้มีผลในการป้องกันชักตั้งแต่วันที่ 8 จนถึงปีที่ 2 หลังเกิดอุบัติเหตุ¹²

แม้ว่าฟีโน็โตอิน (phenytoin) ถูกใช้เพื่อป้องกันการชักหลักหลายฐานแบบ ตั้งแต่การชักเกร็งกระตุกทั้งตัว การชักเฉพาะที่แบบชั้บช้อน ตลอดจนการชักต่อเนื่อง¹³ แต่เนื่องจากฟีโน็โตอิน (phenytoin) สามารถกระตุ้นการทำงานของเอนไซม์ที่สำคัญในเมtabolism ของยา ไซโตโครม พี 450 (cytochrome P450; CYP) 2C และ 3A และส่วนใหญ่ยังถูกทำลายด้วย CYP2C9 ซึ่งสามารถถูกควบคุมได้จากยาหลายชนิด นอกจากนี้ฟีโน็โตอิน ยังจับกับพลาสม่าโปรตีนกว่าร้อยละ 90 จึงสามารถก่อให้เกิดอันตรายร้ายแรงกว่ายาได้ถึง¹⁴ อีกทั้งตัวยาซึ่งสามารถกระตุ้นภาวะภูมิไว (hypersensitivity) ทำให้เกิดผื่นผิวหนัง (skin rash) อาการไข้ หน้าวลั่น (serum sickness) การอักเสบของตับ (hepatitis) หรือการแพ้รุนแรงชนิด Stevens-Johnson syndrome (SJS) และ toxic epidermal necrolysis (TEN) ผ่านยีน HLA-B*15:02 ได้ และยังมีช่วงการรักษาแคบ การใช้ยาเกินขนาดจะทำให้เกิดผลข้างเคียงได้ตั้งแต่อาการคลื่นไส้ (nausea) หัวใจเต้นผิดจังหวะ (arrhythmia) ความดันต่ำ (hypotension) การรบกวนการทำงานของระบบ

ประสาทส่วนกลาง (CNS dysfunction) อาจทำให้ผู้ป่วยมีอาการสับสน (confusion) เตินเซ (ataxia) หรือมีการเคลื่อนไหวของลูกตาผิดปกติ (nystagmus) ในกรณีที่รุนแรงอาจกดการทำงานของภาวะรู้สึกตัว ทำให้ผู้ป่วยอยู่ในภาวะ昏迷 (coma) หรือแม้กระทั่งกระตุ้นให้เกิดการชักได้ การขับยาออกจากร่างกายเป็นแบบ zero-order pharmacokinetics ซึ่งเป็นไปได้ช้า และไม่มียาแก้พิษ (antidote) ทำให้อาจต้องใช้เวลาในการรักษาเป็นเวลานาน การใช้ยาจึงจำเป็นต้องมีความระมัดระวัง¹³⁻¹⁵ และเนื่องจากคุณสมบัติตั้งกล่าวของยาฟีโน็โตอินทำให้เกิดข้อกังวลต่อผลการควบคุมการชักของยาซึ่งสามัญเมื่อมีการเปลี่ยนจากยาตัวแบบมาเป็นยาซึ่งสามัญ การศึกษาหนึ่งจึงมีวัตถุประสงค์หลักเพื่อศึกษาผลการควบคุมการชัก ทั้งการรักษาและป้องกันและผลข้างเคียงที่เกิดขึ้นในผู้ป่วยรายที่มีการบาดเจ็บทางสมองของยาฟีโน็โตอินซึ่งสามัญเพื่อเป็นข้อมูลประกอบการพิจารณาในการเลือกยาให้แก่ผู้ป่วย

วิธีการศึกษา (Material and Methods)

การวิจัยจากการเก็บข้อมูลจากเวชระเบียนของผู้ป่วยที่เข้ารับการรักษาตัวในโรงพยาบาลย้อนหลัง (retrospective cohort study) ตั้งแต่วันที่ 1 มกราคม 2564 ถึงวันที่ 31 ธันวาคม พ.ศ. 2564 ณ โรงพยาบาลสมุทรปราการ โดยเก็บรายงานจากเวชระเบียนผู้ป่วยจำนวน 101 คน ศึกษาในผู้ป่วยที่ได้รับการบาดเจ็บทางสมอง (traumatic brain injury) ซึ่งได้รับการอนุมัติให้ดำเนินการวิจัยจากคณะกรรมการจริยธรรมของโรงพยาบาลสมุทรปราการ ผู้ป่วยจะได้รับการเก็บข้อมูลเรื่อง เพศ อายุ สาเหตุของการบาดเจ็บทางสมอง โรคประจำตัว ข้อบ่งใช้ในการรักษา การรักษาโดยการผ่าตัด ระยะเวลาที่ได้รับยา การชักหลังเกิดอุบัติเหตุและการผ่าตัด และผลข้างเคียงหลังการใช้ยา โดยเกณฑ์การเลือกเข้าในการศึกษานี้คือ ผู้ป่วยอายุตั้งแต่ 15-60 ปี ที่ได้รับยา

Fentoin® (phenytoin sodium for injection 250 mg/5 mL) ซึ่งเป็นยาพีโน่โตอินซีอามัณฑ์ โดยผู้ป่วยต้องไม่เคยมีประวัติเป็นโรคคลonus มาก่อน ไม่เคยได้รับการบาดเจ็บที่สมอง ไม่มีโรคประจำตัวที่เกี่ยวกับตับหรือการให้เลือด ไม่เคยแพ้ยา phenytoin ไม่กระดับ albumin ในเลือดน้อยกว่า 3.5 mg% ไม่อยู่ในภาวะตั้งครรภ์หรือให้นมบุตร และได้รับยาภายใน 24 ชั่วโมงหลังเกิดอุบัติเหตุ

ผู้ป่วยที่เข้าร่วมงานวิจัย หลังจากได้รับการซักประวัติ ตรวจร่างกาย และการรักษาภาวะฉุกเฉินในเบื้องต้นแล้ว ทุกคนได้รับยา phenytoin sodium ขนาด 10-20 mg/kg ทางหลอดเลือดดำขา ใน 60 นาที และต่อตัว 5-10 mg/kg/day โดยแบ่งให้เป็นทุก 8 ชั่วโมง โดยหลังจากผู้ป่วยเริ่มรับประทานอาหารได้ จะเปลี่ยนรูปแบบการให้ยาเป็นแบบรับประทานต่อเนื่องจนครบ 7 วัน

เป็นอย่างน้อย ผู้ป่วยทุกคนได้รับการล้างเกตการซักหลัง อุบัติเหตุและผลข้างเคียงหลังได้ยา

การวิเคราะห์ทางสถิติ (Statistical Analysis)

การกำหนดขนาดตัวอย่างอ้างอิงในการศึกษา ใช้สมการคำนวณการกำหนดกลุ่มตัวอย่างของ Taro Yamane โดยกำหนดจำนวนการทดสอบที่ร้อยละ 80 ที่ค่าอัลฟ่า 0.025 และใช้สมมติฐานทางเดียว ข้อมูลพื้นฐานของผู้ป่วยแสดงเป็นค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐาน p -value < 0.05 ถือว่ามีนัยสำคัญทางสถิติ continuous variables: Mean(\pm SD) และทดสอบทางสถิติโดยโปรแกรม Stata 14.0 (Stata, College Station, TX, USA) สำหรับการคำนวณทางสถิติ

ตารางที่ 1 ลักษณะทั่วไปของผู้ป่วยที่เข้าร่วมการศึกษา

เพศ (sex)	จำนวน	(%)
ชาย	67	84.81
หญิง	12	15.19
อายุ (age)		
15 - 20 ปี	7	8.86
21 - 30 ปี	19	24.05
31 - 40 ปี	16	20.25
41 - 50 ปี	21	26.58
51 - 60 ปี	16	20.25
ประวัติการมีโรคร่วม (past medical history)		
มีโรคประจำตัว	11	13.92
ไม่มีโรคประจำตัว	68	86.08
สาเหตุ (case of injury)		
อุบัติเหตุทาง交通事故 (traffic accident)	48	60.76
หลบหลีก (fall)	26	32.91
ทำร้ายร่างกาย (body assault)	3	3.80
อื่นๆ (others)	2	2.53
การวินิจฉัย (diagnosis)		
เลือดออกภายในตัวกะโหลกศีรษะ (intracranial hemorrhage, ICH)	70	88.61
อื่นๆ (others)	9	11.39

ผลการศึกษา (Results)

จากการเก็บรายงานจากเวชระเบียน ระหว่างวันที่ 1 มกราคม – 31 ธันวาคม พ.ศ. 2564 ผู้ป่วยจำนวน 101 ราย ผ่านเกณฑ์การคัดเลือกทั้งหมด 79 ราย ถูกตัด

ออกจากการศึกษา 22 ราย เนื่องจากมีอายุมากกว่า 60 ปี 9 ราย มีประวัติโรคลมชัก 5 ราย และเคยมีประวัติการบาดเจ็บทางสมอง 2 ราย ได้รับยาหลังเกิดอุบัติเหตุ มากกว่า 24 ชม. 6 ราย

ตารางที่ 2 ข้อบ่งใช้ในการให้ยาแก่ผู้ป่วย

ข้อบ่งใช้ (indication)	จำนวน	(%)
ป้องกันการซักหลังการได้รับอุบัติเหตุทางสมอง (prevention of seizures occurring following severe head injury, post-traumatic seizure)	73	92.41
รักษาการซักหลังการได้รับอุบัติเหตุทางสมอง (treatment of seizures occurring following severe head injury, post-traumatic seizure)	5	6.33
ป้องกันการซักก่อนหรือระหว่างการผ่าตัดทางสมอง (prevention of seizures occurring during or following neurosurgery)	0	0.00
รักษาการซักก่อนหรือระหว่างการผ่าตัดทางสมอง (treatment of seizures occurring during or following neurosurgery)	1	1.27

ตารางที่ 3 ระยะเวลา ก่อนได้รับยาฟีโนตอิน

เวลาที่ได้รับยา	ชั่วโมง
นานที่สุดหลังจากได้รับการบาดเจ็บที่สมอง	23.03
เร็วที่สุดหลังจากได้รับการบาดเจ็บที่สมอง	0.12
เฉลี่ย	6.07

ตารางที่ 4 ผลการรักษาและป้องกันของยาฟีโนตอิน

การซักภายใน 7 วันแรกหลังผ่าตัด/อุบัติเหตุ	จำนวน	(%)
เกิดการซัก	3	3.80
ไม่เกิดการซัก	76	96.20
การซักหลัง 7 วันหลังผ่าตัด/อุบัติเหตุ	จำนวน	(%)
เกิดการซัก	0	0.00
ไม่เกิดการซัก	79	100.00

ตารางที่ 5 การติดตามอาการไม่พึงประสงค์จากการใช้ยา

Adverse drug reaction	จำนวน	(%)
Skin rash	2	2.53
Constipation	17	21.52
Nausea/Vomiting	7	8.86
No	53	67.09

ตารางที่ 6 Subgroup analysis in ICH group divided by imaging diagnosis

t-Test: Two-Sample Assuming Unequal Variances		
	การศึกษาของ Temkin et al	อัตราการซักที่เกิดขึ้นในการศึกษา
Mean	3.6	3.8
Variance	0.084	0.007
Observations	6	6
Hypothesized Mean Difference	0	
Df	6	
t Stat	-1.623995886	
P (T ≤ t) one-tail	0.077751314	
t Critical one-tail	1.943180281	
P (T ≤ t) two-tail	0.155502627	
t Critical two-tail	2.446911851	

จากตารางที่ 1 ในกลุ่มตัวอย่างทั้ง 79 รายนี้ พบร่วมกันเป็นส่วนใหญ่คือ 67 คน (84.81%) โดยกลุ่มอายุที่พบได้มากจะอยู่ในช่วง 21 ปี ถึง 50 ปี ซึ่งส่วนใหญ่ไม่มีโรคประจำตัวคิดเป็นร้อยละ 86.08 โดยพบว่าผู้ป่วยที่เข้ารับการรักษามาด้วย อุบัติเหตุทาง交通事故ที่สุด รองลงมาเป็น หลอน และอุบัติเหตุอื่นๆ ตามลำดับ โดยจากการทำเอกซเรย์คอมพิวเตอร์สมอง (CT Scan) พบร่วมกันเป็นส่วนใหญ่คือ 70 คน (88.61%) และมีวินิจฉัยอื่นๆ อีก 9 คน (11.39%) ซึ่งจากตารางที่ 2 ในผู้ป่วยเหล่านี้ได้รับยาแก้ไข้ในโตรอิน (phenytoin) เพื่อป้องกันการซักหลังได้รับอุบัติเหตุทาง交通事故จำนวน 73 คน (92.41%) และได้รับยาแก้ไข้ในโตรอิน (phenytoin) เพื่อรักษาการซักหลังได้รับอุบัติเหตุทาง交通事故 5 คน (6.33%) โดยจากตารางที่ 3 เฉลี่ยผู้ป่วยได้รับยาแก้ไข้ 6.07 ชั่วโมง (364.38 นาที) หลังเกิดอุบัติเหตุ ซึ่งผู้ได้รับยาแก้ไข้เร็วที่สุดคือ 12 นาที และช้าที่สุดคือ 23.03 ชั่วโมง โดยผลการรักษาตามตารางที่ 4 พบร่วมกันเป็นส่วนใหญ่ใน 7 วัน จำนวน 3 คน (3.80%) และไม่มีผู้เกิดการซักหลังจาก 7 วัน โดยในรายที่เกิดการซักจะให้การรักษาโดยให้ยาฟีโนโตรอินในการควบคุมการซักที่เกิดขึ้น หากไม่

สามารถควบคุมได้ อาจพิจารณาเพิ่มยาแก้ไข้ชนิดอื่น ๆ ร่วมด้วย เช่น เลวีไทร้าซีแแทม เป็นต้น และเฝ้าระวังการซักที่อาจเกิดขึ้นได้ โดย observe vital signs, Glasgow coma scale score (GCS score) และ pupils ทุกครึ่งชั่วโมง เป็นเวลา 2 ชั่วโมง และทุก 1 ชั่วโมงเป็นเวลา 4 ชั่วโมง และทุก 2 ชั่วโมงหลังจากนั้น จนครบ 24 ชั่วโมง และอาจพิจารณาให้ผู้ป่วยได้รับยารับประทานต่อเพื่อป้องกันการซักซ้ำที่อาจเกิดขึ้นได้ และจากตารางที่ 5 หลังจากได้รับยา ผู้ป่วย 53 คน (67.09%) ไม่พบผลข้างเคียงจากการใช้ยา อย่างไรก็ตามผลข้างเคียงที่พบในงานวิจัยนี้คือ อาการผื่น ท้องผูก และคลื่นไส้อาเจียน

วิจารณ์ผลการศึกษา (Discussion)

จากการศึกษาโดยการเก็บข้อมูลย้อนหลังของผู้ใช้ยาแก้ไข้ในโตรอิน (phenytoin sodium for injection 250 mg/5mL) ซึ่งสามารถใช้ในโรงพยาบาลสมุทรปราการ ตั้งแต่วันที่ 1 มกราคม 2564 ถึงวันที่ 31 ธันวาคม 2564 โดยเก็บข้อมูลเรื่อง เพศ อายุ สาเหตุของการบาดเจ็บทางสมอง โรคประจำตัว ข้อบ่งใช้ในการรักษา การรักษาโดยการผ่าตัด ระยะเวลาที่ได้รับยา การซักหลังเกิดอุบัติเหตุและการผ่าตัด และผลข้างเคียงหลังการ

ใช้ยา เมื่อทำการวิเคราะห์ข้อมูลด้วย T-test analysis โดยเป็นการเปรียบเทียบค่า mean sd ระหว่างกลุ่มตัวอย่างที่มีการใช้ยา phenytoin sodium ในโรงพยาบาลสมุทรปราการกับกลุ่มตัวอย่างในการศึกษา ก่อนหน้าพบว่าผู้ป่วยที่ได้ยา กันชักยังมีการชักช่วงต้นภายใน 7 วันแรก มี 3.8% ใกล้เคียงกับงานวิจัยเดิมของ Temkin et al ซึ่งรายงานกลุ่มผู้ป่วยที่ได้รับยา กันชักฟีในโตอิน (phenytoin) และมีการชักภายใน 7 วันแรกอยู่ที่ $3.6 \pm 1.3\%$ $(P = 0.07)$ (ดังตารางที่ 6) โดยปัจจัยที่ทำให้เกิดการชักใน 7 วันแรกหลังเกิดอุบัติเหตุ เกิดได้จากหลายปัจจัย เช่น ผู้ป่วยที่มี GCS score น้อยกว่า หรือเท่ากับ 10 ผู้ป่วยที่เพิ่งเกิดการชัก ผู้ป่วยที่สูญเสียความทรงจำหลังเกิดอุบัติเหตุนานเกิน 30 นาที ผู้ป่วยที่มีภาวะโหลกศีรษะแตกร้าว ผู้ป่วยที่มีการบาดเจ็บจากการถูกทิ่มแทงไปในเนื้อสมอง (penetrating head injury) ผู้ป่วยที่มีเลือดออกในชั้น subdura, epidura หรือในเนื้อสมอง และ ผู้ป่วยที่มีรอยขีดข่วนที่เนื้อสมอง เป็นต้น¹⁶

Gul, N et al พบผู้ป่วยที่ได้ยา กันชักหลังจากการบาดเจ็บทางสมองมีอัตราการชักภายใน 7 วันสูงถึง 16% โดยงานวิจัยนี้เลือกเฉพาะกลุ่มผู้ป่วยที่มีการบาดเจ็บทางสมองแบบปานกลาง (moderate head injury) และการบาดเจ็บทางสมองแบบรุนแรง (severe head injury) นอกจากนี้ยังพบว่าการให้ยาภายใน 12 ชั่วโมง มีอัตราการชักที่ต่ำกว่ากลุ่มผู้ป่วยที่ได้ยา กันชักหลังจาก 12 ชั่วโมง โดยกลุ่มผู้ป่วยที่ต่างกันและค่าเฉลี่ยของระยะเวลาการได้ยา กันชักที่น้อยกว่าคือ 6 ชั่วโมง จึงอาจทำให้พบอัตราการชักที่น้อยกว่า²

จากการวิจัยนี้ไม่พบการแพ้ที่รุนแรงหรือผลข้างเคียงที่ทำให้เสียชีวิต โดยผลข้างเคียงที่พบมากที่สุดในงานวิจัยนี้คือผลข้างเคียงที่เกี่ยวกับทางเดินอาหาร เช่น อาการท้องผูก และคลื่นไส้ อาเจียน คล้ายกับการศึกษาของ S.R. Jahromi et al. ซึ่งพบว่าผู้ป่วยที่ได้รับยา กันชักฟีในโตอินเป็นยาเดี่ยวมีโอกาสเกิดผลข้างเคียงเกี่ยวกับระบบทางเดินอาหารได้ โดยอาการที่พบมากที่สุดคือ อาการท้องผูก (66.7%) ตามด้วยอาการคลื่นไส้

(33.3%), กลีนลำบาก (33.3%), แสบร้อนหน้าอก (33.3%) และท้องเสีย (33.3%)¹⁷

เนื่องจากงานวิจัยนี้เป็นการศึกษาแบบ retrospective ซึ่งเป็นการเก็บข้อมูลย้อนหลัง อาจทำให้ได้ข้อมูลไม่ครบถ้วน ข้อมูลการชักเป็นเพียงการชักแบบมีอาการ ไม่รวมถึงภาวะ non-convulsive seizure ซึ่งต้องทำ EEG (electroencephalogram) เพื่อการวินิจฉัย อีกทั้งอุบัติการณ์การชักหลังอุบัติเหตุหรือการผ่าตัดมีไม่สูงมาก จำนวนผู้ป่วยในงานวิจัยนี้อาจไม่มากพอที่จะสังเกตการชัก และทำให้การพบภาวะแทรกซ้อนน้อยกว่าความเป็นจริง การศึกษาในอนาคตจึงควรเก็บข้อมูลไปข้างหน้า โดยเพิ่มจำนวนกลุ่มประชากรที่ใช้ในการวิจัย ผ่านสังเกตการชัก และบันทึกผลข้างเคียงของการใช้ยา

สรุป (Conclusion)

ยา กันชักฟีในโตอิน (Phenytoin sodium for injection 250 mg/5 mL) ชื่อสามัญที่มีการใช้ในโรงพยาบาลสมุทรปราการ มีผลในการควบคุมการชักในผู้ป่วยที่ได้รับการบาดเจ็บทางสมอง และไม่พบภาวะแทรกซ้อนที่รุนแรงในงานวิจัยนี้

เอกสารอ้างอิง (references)

1. Bruns J, Jr., Hauser WA. The epidemiology of traumatic brain injury: a review. *Epilepsia*. 2003;44(s10):2-10.
2. Gul N, Khan SA, Khattak HA, Muhammad G, Khan AA, Khan I, et al. Efficacy Of Phenytoin In Prevention Of Early Posttraumatic Seizures. *Journal of Ayub Medical College, Abbottabad : JAMC*. 2019;31(2):237-41.
3. Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic Brain Injury-Related Emergency Department Visits, Hospitalizations, and Deaths – United States, 2007 and 2013. *Morbidity and mortality weekly report Surveillance summaries (Washington, DC : 2002)*. 2017;66(9):1-16.
4. Frey LC. Epidemiology of posttraumatic epilepsy: a critical review. *Epilepsia*. 2003;44(s10):11-7.

5. Caveness WF, Meirowsky AM, Rish BL, Mohr JP, Kistler JP, Dillon JD, et al. The nature of posttraumatic epilepsy. *Journal of neurosurgery*. 1979;50(5):545-53.
6. Jennett B. Epilepsy after non-missile head injuries. *Scottish medical journal*. 1973;18(1):8-13.
7. Salazar AM, Jabbari B, Vance SC, Grafman J, Amin D, Dillon JD. Epilepsy after penetrating head injury. I. Clinical correlates: a report of the Vietnam Head Injury Study. *Neurology*. 1985;35(10):1406-14.
8. Odebode OT, Sanya EO. Outcome of early post-traumatic seizure: an experience in Nigeria. *Nigerian journal of clinical practice*. 2008;11(3):193-8.
9. Vespa PM, Miller C, McArthur D, Eliseo M, Etchepare M, Hirt D, et al. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. *Critical care medicine*. 2007;35(12):2830-6.
10. Liesemer K, Bratton SL, Zebrack CM, Brockmeyer D, Statler KD. Early post-traumatic seizures in moderate to severe pediatric traumatic brain injury: rates, risk factors, and clinical features. *Journal of neurotrauma*. 2011;28(5):755-62.
11. Yaari Y, Selzer ME, Pincus JH. Phenytoin: mechanisms of its anticonvulsant action. *Annals of neurology*. 1986;20(2):171-84.
12. Temkin NR, Dikmen SS, Wilensky AJ, Keihm J, Chabal S, Winn HR. A randomized, double-blind study of phenytoin for the prevention of post-traumatic seizures. *The New England journal of medicine*. 1990;323(8):497-502.
13. Jones GL, Wimbish GH, McIntosh WE. Phenytoin: basic and clinical pharmacology. *Medicinal research reviews*. 1983;3(4):383-434.
14. Riva R, Albani F, Contin M, Baruzzi A. Pharmacokinetic interactions between antiepileptic drugs. Clinical considerations. *Clinical pharmacokinetics*. 1996;31(6):470-93.
15. Craig S. Phenytoin poisoning. *Neurocritical care*. 2005;3(2):161-70.
16. Torbic H, Forni AA, Anger KE, Degrado JR, Greenwood BC. Use of antiepileptics for seizure prophylaxis after traumatic brain injury. *American journal of health-system pharmacy : AJHP : official journal of the American Society of Health-System Pharmacists*. 2013;70(9):759-66.
17. Jahromi SR, Togha M, Fesharaki SH, Najafi M, Moghadam NB, Kheradmand JA, et al. Gastrointestinal adverse effects of antiepileptic drugs in intractable epileptic patients. *Seizure*. 2011;20(4):343-6.

Factors Associated with Health-Related Quality of Life in Subarachnoid Hemorrhage in Southern Thailand

Naththanee Pisitthaworakul, M.N.S.

Suphawan Saetan, B.N.S.

Sompit Thongma, B.N.S.

Sukanya Kongchoo, B.N.S.

Jiamjit Kaewsuk, B.N.S.

Busakorn Puntachit, B.N.S.

Phaisit Tabtiang, B.N.S.

Thara Tunthanathip, MD, Ph.D.

Division of Neurosurgery, Department of Surgery, Faculty of Medicine,
Prince of Songkla University, Songkhla, Thailand

Abstract

Background: Subarachnoid hemorrhage (SAH) leads patients to develop subsequent mortalities, disabilities, and poor health-related quality of life (HRQoL). The present study aimed to investigate factors associated with HRQoL in patients with spontaneous SAH following treatment.

Methods: The present study was a cross-sectional study to assess HRQoL in SAH patients after treatment by the visual analogue scale (VAS) scores. The correlation matrix with Pearson's correlation among various variables was used to screen a relationship between VAS scores and other variables. Moreover, linear regression analysis was performed in both univariate and multivariable analyses to explore factors associated with the VAS score.

Results: Ninety SAH patients consented and completed the questionnaire. The Hunt and Hess grade, World Federation of Neurological Surgeons grade, and Fisher grade all had negative correlations with VAS scores of -0.712, -0.551, and -0.377, respectively. Following the multiple linear regression with the backward stepwise procedure, the Hunt and Hess grade grade was the only factor in the final model that was linked to HRQoL of SAH patients after treatment

Conclusion: In summary, the present study demonstrated a negative linear correlation between the severity of SAH and patient-reported HRQoL. For general practice, the Hunt and Hess grade could be the most important predictor of HRQoL after treatment in SAH.

Keywords: Factors associated with quality of life following subarachnoid hemorrhage

Corresponding author: Thara Tunthanathip

Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand, 90110; Phone: 66-92-5495994; Email: tsus4@hotmail.com

บทคัดย่อ

ปัจจัยที่สัมพันธ์กับคุณภาพชีวิตด้านสุขภาพในภาวะเลือดออกในเยื่อหุ้มสมอง ภาคใต้ ประเทศไทย

ณัฐธนีย์ พิลิชชูวรรณกุล, พย.ม., ศุภารรณ แซ่ตัน, พย.บ., สมพิศ ทองมา, พย.บ., สุกัญญา คงชู, พย.บ., เจียมจิต แก้วสุข, พย.บ., บุษกร พันธุชิต, พย.บ., ไอลิส ทับเที่ยง, พย.บ., ตราษันต์ ตันธนาธิป, พ.บ., ปร.ด.

ที่มาและความสำคัญ: ภาวะเลือดออกใต้เยื่อหุ้มสมอง (Subarachnoid hemorrhage: SAH) ทำให้ผู้ป่วยเสียชีวิต ทุพพลภาพ และคุณภาพชีวิตด้านสุขภาพแย่ลง (Health-related quality of life: HRQoL) การศึกษานี้มีวัตถุประสงค์เพื่อศึกษาปัจจัยที่เกี่ยวข้องกับ คุณภาพชีวิตด้านสุขภาพ ในผู้ป่วยเลือดออกใต้เยื่อหุ้มสมองที่เกิดขึ้นเอง ภายหลังการรักษา

วิธีการ: การศึกษารังนี้เป็นการศึกษาแบบภาคตัดขวางเพื่อประเมิน HRQoL ในผู้ป่วย SAH หลังการรักษาด้วยคะแนน Visual Analogue Scale (VAS) และมีการใช้เมทริกซ์สหสัมพันธ์ที่มีสหสัมพันธ์ของเพียร์สันระหว่างตัวแปรต่างๆ ถูกนำมาใช้เพื่อคัดกรองความสัมพันธ์ระหว่างคะแนน VAS กับตัวแปรอื่นๆ นอกจากนี้มีการวิเคราะห์การถดถอยเชิงเส้น เพื่อสำรวจปัจจัยที่เกี่ยวข้องกับคะแนน VAS โดยวิเคราะห์ทั้งแบบการวิเคราะห์ตัวแปรเดียวและหลายตัวแปร

ผลการศึกษา: ผู้ป่วย SAH 90 รายได้เข้าการศึกษา ผลการศึกษาพบว่าปัจจัย Hunt and Hess grade, World Federation of Neurological Surgeons grade และ Fisher grade มีความสัมพันธ์เชิงลบกับคะแนน VAS ที่ -0.712 , -0.551 และ -0.377 ตามลำดับ ตามการถดถอยเชิงเส้นแบบพหุคุณด้วยขั้นตอนแบบย้อนกลับ ปัจจัย Hunt and Hess grade เป็นปัจจัยเดียวในแบบจำลองสุดท้าย (Final model) ที่สัมพันธ์กับ HRQoL ของผู้ป่วย SAH หลังการรักษา

สรุป: การศึกษานี้แสดงให้เห็นถึงความสัมพันธ์เชิงเส้นเชิงลบระหว่างความรุนแรงของ SAH และ HRQoL นอกจากนี้สำหรับนำผลการศึกษาไปใช้ในเวชปฏิบัติทั่วไป Hunt and Hess grade อาจเป็นตัวบ่งชี้ที่สำคัญที่สุดของ HRQoL หลังการรักษาใน SAH

คำสำคัญ: หลอดเลือดสมองโป่งพอง, คุณภาพชีวิตด้านสุขภาพ, โรคหลอดเลือดสมอง, ภาวะเลือดออกในเยื่อหุ้มสมอง

Introduction

Subarachnoid hemorrhage (SAH) is a serious condition that can cause mortality and disability. The common causes of spontaneous SAH are ruptured cerebral aneurysm, ruptured arteriovenous malformation, and other bleeding disorders.¹ SAH patients had an in-hospital mortality rate ranging from 10 to 21.5% based on a review of the literature, as well as functional disability and poor health-related quality

of life (HRQoL).^{2,3}

Lindberg et al. studied the prevalence of disability in SAH patients and found that 91% had independence in self-care, 80% had instrumental (80%) activities of daily living, and 23% reported the need for personal assistance.⁴

From previous studies of HRQoL, Greebe et al. reported HRQoL of 64 SAH patients using the visual analogue scale (VAS) scores and found that the

mean VAS scores after 4-month, 5-year, and 12.5-year follow-ups were 59, 72, and 76, respectively.⁵ Meyer et al. investigated HRQoL at discharge in 113 patients with aneurysmal SAH and discovered that 92.2% of the patients had moderate or severe HRQoL problems. The mean VAS score at hospital discharge was 57.8 (SD 19.3), but it improved to 64.78 (SD 24.99) at the 12-month follow-up.⁶ Additionally, Vogelsang et al. compared self-reported HRQoL in aneurysmal SAH patients after treatment to a general population sample. As a result, the mean VAS score of SAH patients was 70.7 (SD 22.1), while the general population's HRQoL was 77.6. (SD 18). The HRQoL of SAH patients was significantly lower than that of the general population.⁷

The data from previous studies on HRQoL in SAH patients are limited from a review of the literature, particularly the HROoL study from Thailand. Therefore, the present study aimed to investigate factors associated with HRQoL in patients with spontaneous SAH following treatment.

Methods

Study Designs and Study Population

The present study was a cross-sectional study to assess HRQoL in SAH patients after treatment. The study population included SAH patients who were 18 years or older and admitted to a hospital in southern Thailand between January 2022 and December 2022. Patients were excluded for the following reasons: (1) patients were unable to complete the questionnaire on their own or had no caregiver to complete the questionnaire; (2) foreign patients who did not speak Thai or English; (3) patients who did not have a cranial computed tomography (CT)

scan and cerebral angiogram; (4) patients who had hospital discharge with death. Therefore, data on clinical features and imaging findings, and treatment were collected. The clinical-based severity of SAH was estimated according to Hunt and Hess (HH) grading and the World Federation of Neurological Surgeons (WFNS) grading on the first visit to our hospital⁸, while CT-based grading was performed by Fisher grading.⁹

Health-related Quality of Life assessment

Using VAS techniques, the HRQoL following treatment was evaluated. The VAS tool includes a scale range of 0–100 scores, and the patient is assigned the VAS score before hospital discharge.^{10,11} In patients who were not fully conscious, family members or other caregivers assessed the VAS score using the proxy-patient perspective approach.¹²

In particular, the limitation of daily living activities was assessed using a 5-level Likert scale (1–5 levels). As a result, the 5-level responses were classified as follows: 1 denotes no problem, 2 denotes a mild problem, 3–4 denotes a moderate problem, and 5 denotes a severe problem.

Statistical analysis

The clinical features were derived from the descriptive data. While continuous variables were described using the mean and standard deviation (SD), categorical data was represented using percentages. A correlation matrix was used to screen Pearson's correlation among various variables, and a relationship between two variables is generally considered strong when their r value is greater than 0.7.¹³

A simple linear regression analysis was used

to determine the variables influencing the VAS score. Following a simple linear regression analysis, variables with a *p*-value of less than 0.1 were included as candidate variables in a comprehensive multi-variable analysis model. Multiple linear regression analyses were also performed using the backward elimination method, and statistical significance was defined as a *p*-value less than 0.05. The variance inflation factor (VIF) and tolerance were used to estimate multicollinearity. A VIF greater than 10 and a tolerance less than 0.2 were used to define multicollinearity.^{14,15}

Therefore, scatter plots were created to visualize the relationship between the significant variables and the VAS score from the final multiple linear regression model. Stata version 16 was used for statistical analysis. (StataCorp, Texas, United States, SN 401606310234).

Ethical considerations

The human research ethics committee approved the present study (REC.64-005-10-1). The patient's informed consent was performed, and patient identification numbers were encoded before analysis.

Results

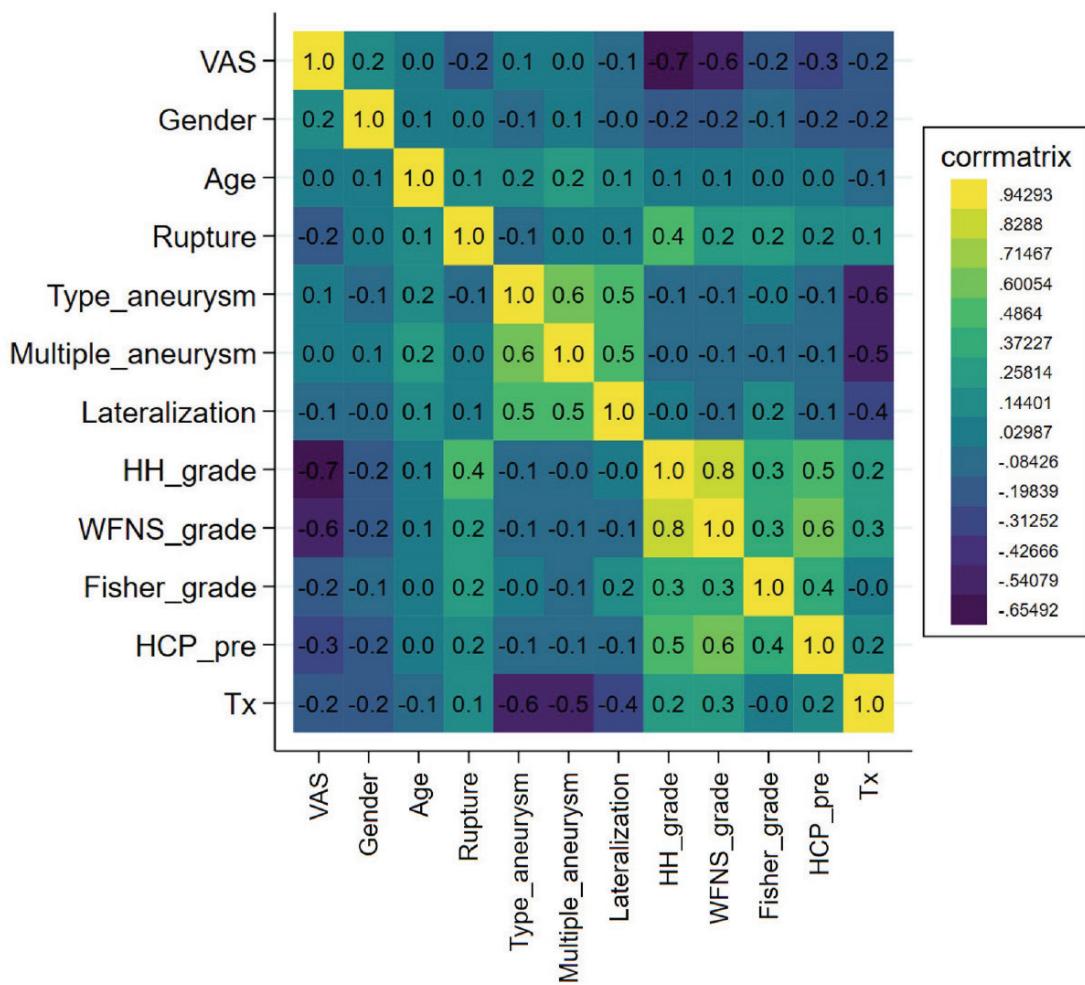
Of the 93 SAH patients enrolled in the study, ninety patients consented and completed the questionnaire. Two patients were excluded because they were foreign patients who could not communicate in Thai or English languages. Additionally, One patient's cranial CT brain and cerebral angiogram were also unavailable. The baseline characteristics are demonstrated in Table 1. The average age of the present cohort was 58.07 (SD 13.99), with a range of 24 to 100 years, and more than two-thirds were female. Two-thirds of the current cohort had WFNS

Table 1 Baseline clinical characteristics (N=90)

Factor	N (%)
Gender	
Male	32 (25.6)
Female	58 (64.4)
Mean age-year (SD)	58.07 (13.99)
Type of aneurysm	
Anterior circulation	42 (46.7)
Posterior circulation	38 (42.2)
Negative finding of angiogram	10 (11.1)
Multiple aneurysm	22 (24.4)
Lateralization of aneurysm	
Left	29 (32.2)
Right	33 (36.7)
Midline	6 (6.7)
Bilateral	12 (13.3)
Negative finding of angiogram	10 (11.1)

Table 1 (cont.) Baseline clinical characteristics (N=90)

Factor	N (%)
Hunt and Hess grade	
I	24 (26.7)
II	42 (46.6)
III	11 (12.2)
IV	9 (10.0)
V	4 (4.4)
World Federation of Neurological Surgeons grade	
I	59 (65.6)
II	11 (12.2)
III	4 (4.4)
IV	12 (13.3)
V	4 (4.4)
Fisher grade	
I	2 (2.2)
II	23 (25.6)
III	30 (33.3)
IV	35 (38.9)
Pretreatment hydrocephalus	15 (16.7)
Treatment	
Clipping operation	32 (35.6)
Endovascular treatment	48 (53.3)
Schedule for follow-up angiogram	10 (11.1)
Health-related quality of life at hospital-discharge	
Mean visual analogue scale score after treatment (SD)	77.11 (19.84)
Status before discharge	
Neurological deficit	23 (25.5)
Self-care	
No problem	49 (54.4)
Mild problem	22 (22.4)
Moderate problem	19 (21.1)
Severe problem	10 (11.1)
Usual activities	
No problem	48 (53.3)
Mild problem	25 (27.8)
Moderate problem	7 (7.8)
Severe problem	10 (11.1)
Headache	
No problem	33 (36.7)
Mild problem	28 (31.1)
Moderate problem	25 (27.8)
Severe problem	4 (4.4)
Anxiety/depression	
No problem	39 (43.3)
Mild problem	26 (28.8)
Moderate problem	22 (24.4)
Severe problem	3 (3.3)


* included spontaneous SAH with negative finding on cerebral angiogram and ruptured AVM

† included ruptured AVM

grade I, while 46.6% of all patients had HH grade II severity. On cranial CT, 35 individuals (38.9% of the population) had Fisher grade IV. Ten patients (11.1%) with SAH showed negative cerebral angiography findings, but aneurysm rupture was identified in 88.9% of all instances. In detail, anterior circulation ruptured aneurysms were detected in forty-two patients (46.7%), while posterior circulation ruptured aneurysms were found in 42.2% of instances. A total of 24.4% of the current cohort had multiple cerebral aneurysms. The current study found no mortality at

hospital discharge, but three patients (3.3%) died at the 1-month follow-up. Furthermore, the current study's mean VAS score before hospital discharge was 77.11 (SD 19.84).

Moreover, the neurological deficit was observed in 25.5% of cases before hospital discharge, while SAH patients had self-care and usual activities problems in 45.6% and 46.7%, respectively. In the present study, 63.3% of SAH patients had headaches before being discharged from the hospital.

Figure 1 Correlation matrix among various clinical variables

The correlation matrix was performed to screen the relationship among various variables, as shown in Figure 1. The HH grade, WFNS grade, and Fisher grade all had negative correlations with VAS scores of -0.712, -0.551, and -0.377, respectively. As a result, simple linear regression analyses with various clinical and imaging variables were carried out, as shown in Table 2. Therefore, the multiple regression model included five candidate variables. Multicollinearity was checked for these candidate variables, and the VIFs for age, HH grade, WFNS grade, Fisher grade, and pre-treatment hydrocephalus were 1.30,

1.39, 1.25, 1.33, and 1.44, respectively. Furthermore, the age, HH grade, WFNS grade, Fisher grade, and pre-treatment hydrocephalus tolerances were 0.766, 0.719, 0.701, 0.712, and 0.694, respectively.

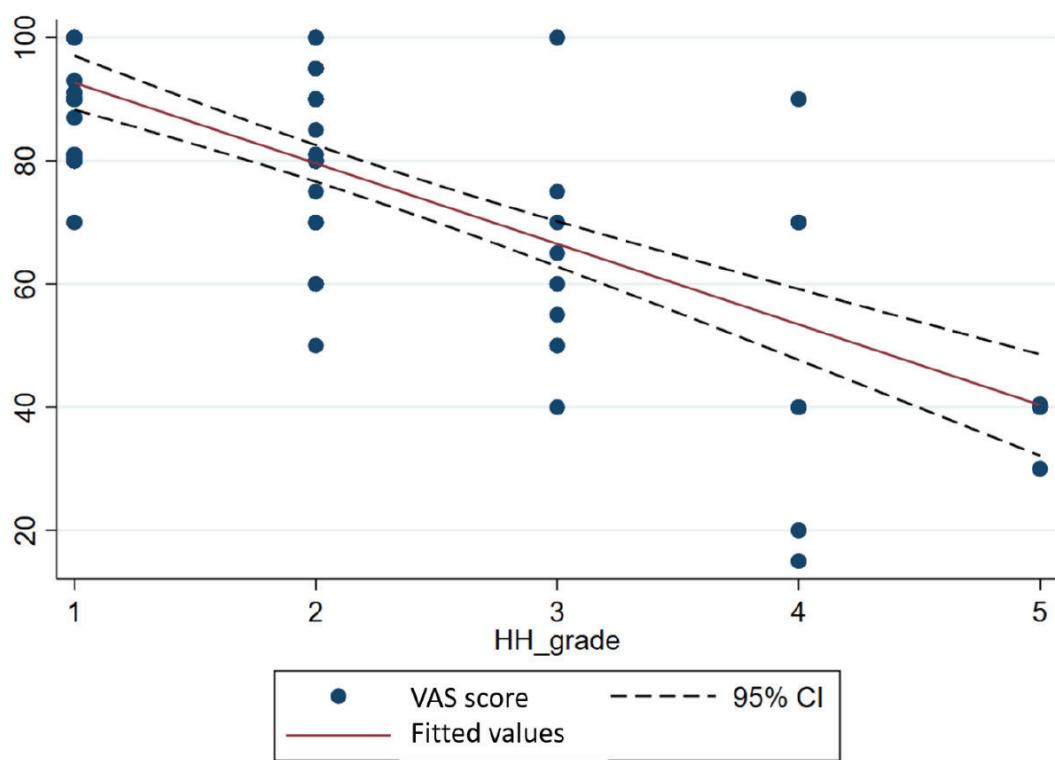

After the backward stepwise procedure, HH grade was the only factor in the final model that was linked to HRQoL of SAH patients after treatment, as shown in Table 3. From the final model, a scatter plot between the VAS score and HH grade was made with a linear fitting regression line, as shown in Figure 2.

Table 2 Simple linear regression analysis

Factor	Beta	95%CI	p-value
Gender	6.51	-2.11,15.13	0.13
Age	0.005	-0.29,0.30	0.04
Posterior circulation	2.50	-3.80,8.80	0.43
Multiple aneurysm	1.56	-5.61,8.75	0.66
Lateralization	-1.30	-4.92,2.32	0.47
HH grade	-13.08	-15.81,-10.34	< 0.001
WFNS grade	-8.62	-11.39,-5.85	< 0.001
Fisher grade	-6.04	-9.18,-2.89	< 0.001
Pre-treatment hydrocephalus	-15.74	-26.44,-5.03	0.004
Treatment	-5.30	-11.01,0.40	0.11

Table 3 Multiple linear regression analysis

Model	Beta	95%CI	p-value
Full model			
Constant	100.34		
Age	0.052	-0.16,0.26	0.63
HH grade	-16.69	-22.51,-10.88	< 0.001
WFNS grade	2.34	-2.44,7.12	0.33
Fisher grade	0.65	-2.72,4.04	0.70
Pre-treatment hydrocephalus	0.59	-9.69,10.88	0.90
Final model			
Constant	105.75		
HH grade	-13.08	-15.81,-10.34	< 0.001

Figure 2 Scatter plot of visual analogue scale score and Hunt and Hess grade with linear fitting lines.

Discussion

SAH leads patients to develop subsequent disabilities as a result. There were noticeable difficulties with self-care and regular activities. Moreover, Patients' HRQoL was shown to be lower. In the current study, the mean VAS score before hospital discharge was 77.11 (SD 19.84). These results are in concordance with other research reports. Prior studies reported mean VAS score of SAH patients reduced to 57.8–76 after follow-ups.^{5–7}.

Various factors associated with HRQoL were discovered through a review of the literature. Vogelsang et al. studied 217 aneurysmal SAH patients and discovered that Glasgow coma score was significantly related to HRQoL, whereas treatment type (clipping

and coiling) was not significantly related to HRQoL.⁷ Taufique et al. investigated 1-year HRQoL in 1,181 SAH patients and discovered that nonwhite ethnicity, high school education or less, depression history, poor clinical grade (HH grade 3), and delayed infarction were predictors of poor HRQoL.¹⁶ Kronvall et al. conducted a prospective study to estimate reduced HRQoL in SAH patients and found that age, gender, HH grade, and pituitary dysfunction were predictors of HRQoL.¹⁷ Furthermore, according to Passier et al., female gender and older age are significantly related to poorer HRQoL after aneurysmal SAH.¹⁸

In the present study, the multivariable analysis demonstrated a negative correlation between high HH grade and VAS score. The HRQoL of SAH patients

decreased as a result of neurological deficits and headaches. Blood extravasation into the subarachnoid space between the pial and arachnoid membranes obstructs cerebrospinal fluid flow, which may result in increased intracranial pressure and decreased HRQoL due to pain symptoms.¹⁹ Also, having both an intracranial hematoma and a cerebral infarction at the same time can cause neurological problems that make SAH patients' HRQoL even worse.^{16,19}

According to the World Health Organisation paradigm, HRQoL has lately been proposed as a supplement to standard neurological outcome indicators from the patient's perspective. For implication, the findings of this study may be used for future research such as economic evaluation, or health interventions and technologies.²⁰ Additionally, the factors associated with poor HROoL from the present study may be used to establish a treatment plan and predict their prognosis in the real-world context. However, the current study's limitations should be noted. We did not compare HRQoL between SAH patients and the general population; however, we assumed the general population's well-being score was close to 100 using the VAS method.²¹

Furthermore, because this study had a small sample size, a larger, multicenter trial would be preferable in the future to improve results and confirm the relationship between HRQoL and HH grade.^{22,23}

Conclusion

In summary, the present study demonstrated a negative linear correlation between the severity of SAH and patient-reported HRQoL. For general practice, the HH grade could be the most important predictor of HRQoL after treatment in SAH.

Funding

None

Conflict of Interest

The authors declare that there were no conflicts of interest concerning the work contained herein.

References

1. Sobey CG, Faraci FM. Subarachnoid haemorrhage: what happens to the cerebral arteries?. *Clin Exp Pharmacol Physiol* 1998;25(11):867-76.
2. Chan V, Lindsay P, McQuiggan J, Zagorski B, Hill MD, O'Kelly C. Declining Admission and Mortality Rates for Subarachnoid Hemorrhage in Canada Between 2004 and 2015. *Stroke* 2019;50(1):181-4.
3. Park SW, Lee JY, Heo NH, Han JJ, Lee EC, Hong DY, et al. Short- and long-term mortality of subarachnoid hemorrhage according to hospital volume and severity using a nationwide multicenter registry study. *Front Neurol.* 2022;13:952794.
4. Lindberg M, Angquist KA, Fodstad H, Fugl-Meyer AR. Self-reported prevalence of disability after subarachnoid haemorrhage, with special emphasis on return to leisure and work. *Br J Neurosurg* 1992;6(4):297-304.
5. Greebe P, Rinkel GJ, Hop JW, Visser-Meily JMA, Algra A. Functional outcome and quality of life 5 and 12.5 years after aneurysmal subarachnoid haemorrhage. *J Neurol* 2010;257(12):2059-64.
6. Meyer B, Ringel F, Winter Y, Spottke A, Gharevi N, Dams J, et al. Health-related quality of life in patients with subarachnoid haemorrhage. *Cerebrovasc Dis* 2010;30(4):423-31.
7. von Vogelsang AC, Burström K, Wengström Y, Svensson M, Forsberg C. Health-related quality of life 10 years after intracranial aneurysm rupture: a retrospective cohort study using EQ-5D. *Neurosurgery* 2013;72(3):397-406.
8. Sungkaro K, Tunthanathip T, Taweesomboonyat C,

Kaewborisutsakul A. Surgical outcomes of patients after treatment of ruptured anterior communicating artery aneurysms: “real-world” evidence from southern Thailand. *Chin Neurosurg J.* 2021;7(1):42.

9. Taweesomboonyat C, Tunthanathip T, Kaewborisutsakul A, Saeheng S, Oearsakul T, Riabroj K, et al. Outcome of Ruptured Posterior Communicating Artery Aneurysm Treatment Comparing Between Clipping and Coiling Techniques. *World Neurosurg.* 2019;125:e183-8.

10. Hauser K, Walsh D. Visual analogue scales and assessment of quality of life in cancer. *J Support Oncol* 2008;6(6):277-82.

11. Hilari K, Boreham LD. Visual analogue scales in stroke: what can they tell us about health-related quality of life?. *BMJ Open* 2013;3(9):e003309.

12. Pickard AS, Knight SJ. Proxy evaluation of health-related quality of life: a conceptual framework for understanding multiple proxy perspectives. *Med Care* 2005;43(5):493-9

13. Tunthanathip T, Oearsakul T, Tanvejsilp P, Sae-Heng S, Kaewborisutsakul A, et al. Predicting the Health-related Quality of Life in Patients Following Traumatic Brain Injury. *Surg J (N Y)* 2021;7(2):e100-10

14. Kim JH. Multicollinearity and misleading statistical results. *Korean J Anesthesiol* 2019;72(06):558-69

15. Yoo W, Mayberry R, Bae S, Singh K, Peter He Q, Lillard JW Jr. A study of effects of multicollinearity in the multivariable analysis. *Int J Appl Sci Technol* 2014;4(5):9-19

16. Taufique Z, May T, Meyers E, Falo C, Mayer SA, Agarwal S, et al. Predictors of Poor Quality of Life 1 Year After Subarachnoid Hemorrhage. *Neurosurgery* 2016;78(2):256-64.

17. Kronvall E, Sonesson B, Valdemarsson S, Siemund R, Säveland H, Nilsson OG. Reduced Quality of Life in Patients with Pituitary Dysfunction After Aneurysmal Subarachnoid Hemorrhage: A Prospective Longitudinal Study. *World Neurosurg* 2016;88:83-91.

18. Passier PE, Visser-Meily JM, Rinkel GJ, Lindeman E, Post MW.. Determinants of health-related quality of life after aneurysmal subarachnoid hemorrhage: a systematic review. *Qual Life Res* 2013;22(5):1027-43.

19. Golanov EV, Bovshik EI, Wong KK, Pautler RG, Foster CH, Federley RG, et al. Subarachnoid hemorrhage – Induced block of cerebrospinal fluid flow: Role of brain coagulation factor III (tissue factor). *J Cereb Blood Flow Metab.* 2018;38(5):793-808.

20. Tunthanathip T. Health Economic Evaluation in Neurosurgery. In: Tunthanathip T. ed. *Translational Medicine in Neurosurgery*. Bangkok: Sahamit Pattana printing; 2022: 239-72.

21. Shmueli A. The Visual Analog rating Scale of health-related quality of life: an examination of end-digit preferences. *Health Qual Life Outcomes* 2005;3:71.

22. Tunthanathip T, Sae-Heng S, Oearsakul T, Kaewborisutsakul A, Taweesomboonyat C. Economic impact of a machine learning-based strategy for preparation of blood products in brain tumor surgery. *PLoS One* 2022;17(7):e0270916.

23. Tunthanathip T, Duangsuwan J, Wattanakitrungroj N, Tongman S, Phuenpathom N. Comparison of intracranial injury predictability between machine learning algorithms and the nomogram in pediatric traumatic brain injury. *Neurosurg Focus* 2021;51(5):E7.