

Thai Journal of Neurological Surgery

วารสารประจำสัปดาห์ด้วยศาสตร์ไทย

ปีที่ 16 ฉบับที่ 4 ตุลาคม - ธันวาคม 2568
Vol. 16 No. 4 October - December 2025

เจ้าของ : ราชวิทยาลัยประสาทศัลยแพทย์แห่งประเทศไทย

สำนักงาน : อาคารเฉลิมพระบารมี ๕๐ ปี
เลขที่ 2 ซอยสุนย์วิจัย ถนนเพชรบุรีตัดใหม่ แขวงบางกะปิ
เขตห้วยขวาง กรุงเทพฯ ๑๐๓๑๐
โทรศัพท์ ๐๒-๗๑๘๑๙๙๖ โทรสาร ๐๒-๗๑๘๑๙๙๗

บรรณาธิการ : นายแพทย์กิติพร ศรีอมรรัตนกุล

ออกแบบจัดรูปเล่ม:

สำนักพิมพ์กรุงเทพเวชสาร

Bangkok Medical Publisher Ltd. Part.

3/3 สุขุมวิท 49 แขวงคลองตันเหนือ เขตวัฒนา กรุงเทพ ๑๐๑๑๐

โทรศัพท์ ๐-๒๒๕๘-๗๙๕๔, โทรสาร ๐๒-๒๕๘-๗๙๕๔

E-mail: bkkmed@gmail.com

คณะกรรมการบริหารราชวิทยาลัยประสาทศัลยแพทย์แห่งประเทศไทย

อดีตประธานวิทยาลัยฯ

และราชวิทยาลัยฯ

นายแพทย์วัทัญญา ประชานันท์

นายแพทย์ช่อเพี้ยว เตโชพาร

นายแพทย์ศุภโชค จิตรawanich

นายแพทย์นัครชัย เผื่อนปฐม

นายแพทย์ไชยวิทย์ อนไพลศala

นายแพทย์สิรุจัน ศกุลณัมมารคा

นายแพทย์ยอดรัก ประเสริฐ

นายแพทย์เกรียงศักดิ์ ลิ้มพัสดาน

นายแพทย์รุ่งศักดิ์ ศิวนุวัฒน์

ประธานราชวิทยาลัยฯ

นายแพทย์กุลพัฒน์ วีรสาร

ผู้รักษาตำแหน่งประธานฯ

นายแพทย์เอก หังสูด

เลขานิการ

นายแพทย์กฤษณพันธ์ บุณยะรัตเวช

เหรียญภูมิ

นายแพทย์ธีระ ตั้งวิริยะไพบูลย์

กรรมการวิชาการ

นายแพทย์ติลก ตันทองทิพย์

นายทะเบียน

นายแพทย์อัญญา นรเศรษฐ์อัดา

กรรมการวารสาร

นายแพทย์กิตติพร ศรีออมรัตนกุล

ปฏิคิม

นายแพทย์อำนาจ กิจควรตี

กรรมการสมาชิกสัมพันธ์

นายแพทย์ศักดิ์ชัย แซ่เข็ง

กรรมการกลาง

นายแพทย์ธีรพล วิทอิเวช

นายแพทย์ณัฐพล เลิศการค้าสุข

นายแพทย์ภาณุ บุญต่อเติม

นายแพทย์ประพิษฐ์ ไชยบุตร

แพทย์หญิงอารีพร ชนเนินขอบ

แพทย์หญิงวาริน อุย়েংগেটু

Executive Committee 2025–2027

Past-President

Watanyoo Prachayanont, M.D.

Chopeow Taecholarn, M.D.

Supachoke Chitvanich, M.D.

Nakornchai Phuenpathom, M.D.

Chaiwit Thanapaisal, M.D.

Siraruj Sakoolnamarka, M.D.

Yodruk Prasert, M.D.

Kriengsak Limpastan, M.D.

Rungsak Siwanuwatn, M.D.

President

Kullapat Veerasarn, M.D.

President-elect

Ake Hansasuta, M.D.

Secretary General

Krishnapundha Bunyaratavej, M.D.

Treasurer

Teera Tangviriyapaiboon, M.D.

Scientific Chairman

Dilok Tantongtip, M.D.

Registrar

Thunya Norasetthada, M.D.

Editor of Journal

Kitiporn Sriamornrattanakul, M.D.

Social Function

Amnat Kitkhuandee, M.D.

Relationship Member

Sakchai Saeheng, M.D.

Board of Directors

Theerapol Witthiwej, M.D.

Nuttapon Lertkankasuk, M.D.

Panu Boontoterm, M.D.

Pradit Chaiyabud, M.D.

Areeporn Chonhenchob, M.D.

Warin Yuyangket, M.D.

กองบรรณาธิการ

นายแพทย์กรรณรักษา อุรัสยะนนทน์
นายแพทย์กฤษณพันธ์ บุณยะรัตเวช
นายแพทย์กันต์ ดวงประเสริฐ
นายแพทย์กิติพงศ์ ศรีออมรัตนกุล
นายแพทย์กุลพัฒน์ วีรสาร
นายแพทย์จิระพงศ์ วงศ์ฟัก
แพทย์หญิงจิระพร ออมรฟ้า
นายแพทย์ชานน อริยะประกาย
นายแพทย์ชุมพล เจตจำรงค์
นายแพทย์ชิตติวัฒน์ ตันศิริสิทธิกุล
นายแพทย์ชัยวิทย์ อนไพบูลย์
นายแพทย์จูนัตว์ จันทราภาส
นายแพทย์ฐานกร เอี้ยวสกุล
นายแพทย์ฐานปกรณ์ ภูมิชาติ
นายแพทย์ณัฐพล เลิศการค้าสุข
นายแพทย์ณัฐวุฒิ นิลเจียรสนกุล
นายแพทย์ดิลก ตันทองทิพย์
นายแพทย์ธนบัตร สมบูรณ์ทรัพย์
นายแพทย์ธนกาน งามมณี
นายแพทย์ธนัฐ วนิยะพงศ์
นายแพทย์ธารา ตันธนารีป
นายแพทย์ธีรพล วิทอิเวช
นายแพทย์ธีระ ตั้งวิริยะไพบูลย์
นายแพทย์ธีระเดช ศรีกิจวิไลกุล
นายแพทย์นพพร เล็กเจริญสมบัติ
แพทย์หญิงนันทาศิริ วิทยนคร
นายแพทย์บรรพต สิงห์อินามสุวรรณ

นายแพทย์ปักกุณณ์ จิตตภิรมย์ศักดิ์
นายแพทย์ปรีดี นิมมานนิตร์
นายแพทย์ปิยะณัฐ หัววงศ์
นายแพทย์ปุณณรัตน์ ศิริอรานนท์
นายแพทย์พนิช สถาพรธีระ¹
นายแพทย์พิชเยนทร์ ดวงทองพล
นายแพทย์พีรพงษ์ มนต์รีวัฒนชัย
นายแพทย์พีรศิลป์ โตวชิราภรณ์
นายแพทย์ภัทรรัตน์ รักษา²
นายแพทย์ภานุ บุญต่อเติม
แพทย์หญิงลิสา กิตติลังวรา³
นายแพทย์วรท รัตนวินิจกุล
แพทย์หญิงวรินทร์ ออยรังเกด⁴
แพทย์หญิงศรัญญา ยุทธโกรกิท
นายแพทย์อติเทพ มงคลรัตน์นันต์
นายแพทย์อนุกูล แก้วบริสุทธิ์สกุล
นายแพทย์ลงกรณ์ ใจอิ่มสิน⁵
นายแพทย์อัคคพงษ์ นิติสิงห์⁶
แพทย์หญิงอารีพร ชนเน่ห์ขอบ⁷
นายแพทย์อำนาจ กิจควรดี⁸
นายแพทย์อิทธิชัย ศักดิ์อรุณชัย⁹
แพทย์หญิงอินธิรา ขัมภลิชิต¹⁰
นายแพทย์อิศรา ภูมิเนาร์นิล¹¹
นายแพทย์อุตม บัวราภรณ์¹²
นายแพทย์เอก หังสูต¹³
นายแพทย์เอกพจน์ จิตพันธ์¹⁴

คำแนะนำในการส่งบทความ (Information for Authors)

วารสารประสาทศัลยศาสตร์ไทย ใช้ชื่อภาษาอังกฤษว่า “Thai Journal of Neurological Surgery” ใช้ชื่อย่อว่า “Thai J Neurol Surg” เป็นสื่อทางการของราชวิทยาลัยประสาทศัลยแพทย์แห่งประเทศไทย พิมพ์เผยแพร่แก่สมาชิกของราชวิทยาลัยฯ กำหนดออกทุก 3 เดือน โดยมีวัตถุประสงค์เพื่อ:

- นำเสนอผลงานวิจัย ข้อเขียน บทความตลอดจนความคิดเห็นเชิงวิชาการทางประสาทศัลยศาสตร์และสาขาที่เกี่ยวข้อง
- เป็นสื่อกลางใช้แลกเปลี่ยนความคิดเห็นต่างๆ ระหว่างสมาชิกของราชวิทยาลัยฯ
- สนับสนุนกิจกรรมการศึกษาต่อเนื่องด้วยตนเองของสมาชิก

เพื่อให้บรรลุวัตถุประสงค์ดังกล่าว วารสารประสาทศัลยศาสตร์ไทย ยินดีรับบทความเป็นสื่อกลางระหว่างสมาชิกเพิ่มพูนความรู้ทางวิชาการแก่สมาชิกและวิชาการสาขาอื่นที่เกี่ยวข้อง บทความที่ส่งมาต้องไม่เคยพิมพ์เผยแพร่มาก่อน ข้อคิดเห็นในบทความ เนื้อหา และองค์ประกอบของเนื้อหาเป็นความรับผิดชอบของผู้เขียนบทความนั้น ราชวิทยาลัยประสาทศัลยแพทย์แห่งประเทศไทยไม่จำเป็นต้องเห็นพ้องด้วย และคณะกรรมการขอสงวนสิทธิ์ในการตรวจทานแก้ไขและพิจารณาตีพิมพ์โดยมีหลักเกณฑ์ดังนี้

1. ประเภทบทความ

นิพนธ์ต้นฉบับ (Original articles)

เป็นรายงานผลงานวิจัย ค้นคว้า การเขียนบทความนิพนธ์ต้นฉบับให้ลำดับเนื้อหาดังต่อไปนี้

- ชื่อเรื่อง (title), ผู้นิพนธ์ (author and co - authors), สถาบันที่ผู้นิพนธ์ปฏิบัติงาน (institute) และแหล่งทุนสนับสนุน (ถ้ามี)
- บทคัดย่อ (abstract) ทั้งภาษาไทยและภาษาอังกฤษ
- คำสำคัญ (key word) สำหรับจัดทำด้วย ระบุไว้ใต้บทคัดย่อหรือ abstract
- บทนำ (introduction)
- วัสดุและวิธีการ (materials and methods)
- ผลการศึกษา (results)
- วิจารณ์ (discussions)
- สรุป (conclusions)
- เอกสารอ้างอิง (references)

บทความปริทัศน์ (review articles)

ควรเป็นบทความที่ให้ความรู้ใหม่ รวบรวมสิ่งตรวจพบใหม่ หรือเรื่องที่น่าสนใจที่สามารถนำไปประยุกต์ใช้ได้ หรือเป็นบทความวิเคราะห์โรค หรือ วิจารณ์สถานการณ์การเกิดโรค ประกอบด้วย

1. บทนำ (introduction)
2. วัตถุประสงค์ (objective)
3. เนื้อหาวิชา (content)
4. วิจารณ์ (discussions)
5. สรุป (conclusions)
6. เอกสารอ้างอิง (references)

รายงานผู้ป่วย (care report)

เขียนได้ 2 แบบ คือ รายงานอย่างละเอียด หรือสั้นๆ ประกอบด้วย บทนำ รายงานผู้ป่วยวิจารณ์อาการ ทางคลินิกผลตรวจทางห้องปฏิบัติการ เสนอ ข้อคิดเห็นอย่างมีขอบเขต สรุป บทคัดย่อ แนะนำให้มีภาษาไทย และภาษาอังกฤษ

บทความพิเศษ (special articles)

เขียนจากประสบการณ์ แสดงความคิดเห็น หรือจากการค้นคว้า

เทคนิคและเครื่องมืออุปกรณ์ (technique & instrumentation)

เพื่อเสนอเทคนิค หรืออุปกรณ์ใหม่ โดยจะต้องบอกชื่อปั๊บชี้ และผลการรักษาด้วย

จดหมายถึงบรรณาธิการ (letter to the editor)

เพื่อให้ความคิดเห็นเกี่ยวกับบทความที่ตีพิมพ์ไปแล้ว

2. เอกสารอ้างอิง (Reference)

การอ้างอิงใช้ตาม Vancouver Style หรือ Uniform Requirement for Manuscripts Submitted to Biomedical Journals, 5th edition ค.ศ. 1997 โดยได้ตัวเลขกระดับในเนื้อเรื่องตรงบริเวณที่อ้างอิง เรียงตามลำดับก่อนหลัง การอ้างอิง แล้วจึงนำเอาเอกสารที่ถูกอ้างอิงมาเรียงตามลำดับการอ้างอิงท้ายบทความ บทความที่มีผู้นิพนธ์ไม่เกิน 6 คน ให้ใส่ชื่อผู้นิพนธ์ทั้งหมด ถ้าเกิน 6 คน ให้ใส่ 6 คน แล้วตามด้วย “et al.” หรือ “และคณะ”

การอ้างอิงเอกสาร

Broersen LHA, Biermasz NR, van Furth WR, de Vries F, Verstegen MJT, Dekkers OM, et al. Endoscopic vs. microscopic transsphenoidal surgery for Cushing's disease: a systematic review and meta-analysis. Pituitary 2018;21(5):524-34.

การอ้างอิงวารสาร online

Sanders GD, Bayourni AM, Holodnity M, Owens DK. Cost-effectiveness of HIV screening in patients older than 55 year of age. Ann Intern Med [cited 2008 Oct 7]:148(2). Available from:<http://www.annals.org/cgi/reprint/148/12/889.pdf>

การอ้างอิงจาก World Wide Web

National Institute for Health and Clinical Excellence. Head injury triage, assessment, investigation and early management of head injury in infants, children and adults. Clinical guideline June 2003. <http://www.nice.org.uk/guidance/CG4/?c=91522> (accessed 23 November 2006).

การอ้างอิงหนังสือ หรือตำรา

ชื่อผู้เขียน. ชื่อหนังสือ. ครั้งที่พิมพ์ ชื่อเมือง (ใช้ชื่อเมืองชื่อเดิม): ชื่อโรงพิมพ์ ปี ค.ศ. ตัวอย่าง : Murray PR, Rosenthal KS, Kobayashi GS, Pfaller MA. Medical microbiology. 4th ed. St. Louis (MO): Mosby; 2002.

บทในหนังสือหรือตำรา

ชื่อผู้เขียน. ชื่อเรื่อง. ใน: ชื่อบรรณาธิการ. ชื่อหนังสือ. ครั้งที่พิมพ์. ชื่อเมือง. ชื่อโรงพิมพ์. ปี ค.ศ.: หน้าแรก-หน้าสุดท้าย

ตัวอย่าง: Meltzer PS, Kallioniemi A, Trent JM. Chromosome alterations in human solid tumors. In: Vogelstein B, Kinzler KW, editors. The genetic basis of human cancer. New York: McGraw-Hill; 2002. p. 93-113.

3. การพิมพ์และการส่งต้นฉบับ

- ให้ส่งต้นฉบับที่จะลงตีพิมพ์ โดยโปรแกรมที่ใช้พิมพ์ต้องเป็น Microsoft Word. Font Angsana New ขนาดตัวอักษร 16 พร้อมไฟล์ประกอบรูปภาพ และกราฟ รวมทั้งเอกสารรับรองจากคณะกรรมการจุลทรรศน์งานวิจัย (เฉพาะกรณีเป็นงานวิจัย) ไปยัง e-mail: journalrcnst@gmail.com

- การพิมพ์เนื้อเรื่องให้ใส่เลขหน้ากำกับทุกหน้าที่มุ่งข้ามด้านบน

หน้าแรก หรือ title page เขียนเป็นภาษาไทยและอังกฤษ ประกอบด้วย

- (1) ชื่อเรื่อง
- (2) ชื่อ สกุลของผู้เขียน คุณวุฒิ โดยใช้ตัวอย่างของปริญญาหรือคุณวุฒิที่เป็นสากล (กรณีที่ผู้นิพนธ์มีหลายคนให้ระบุทุกคน)
- (3) สถานที่ทำงาน
- (4) ชื่อเรื่องอย่างย่อ หรือ running title (ความยาวไม่เกิน 40 ตัวอักษร)

4. การรับเรื่องตีพิมพ์

หากต้นฉบับที่เสนอมาได้รับการพิจารณาให้นำมาลงตีพิมพ์ ทางสำนักงานจะแจ้งให้เจ้าของบทความทราบพร้อมทั้งจัดส่งฉบับร่างให้ผู้เขียนตรวจทานและขอคืนตามกำหนดเวลา

5. สถานที่ติดต่อ

รศ.นพ.กิติพร ศรีออมรัตนกุล

อาคารเฉลิมพระบารมี ๕๐ ปี

เลขที่ 2 ซอยศูนย์วิจัย ถนนเพชรบุรีตัดใหม่ แขวงบางกะปิ เขตห้วยขวาง กรุงเทพฯ 10310

โทรศัพท์ 02-7181 996 โทรสาร 02-7181 997

E-mail: kitiporn@nmu.ac.th

สารบัญ

นิพนธ์ต้นฉบับ/Original Articles

- ▲ **Seizure Outcome after Surgical Treatment for Temporal Lobe Epilepsy 83**
Superficial temporal artery
Tanatkan Kumpanont, M.D.
Teeradej Srikiyvilaikul, M.D.
- ▲ **ผลลัพธ์ระยะยาวในการผ่าตัดก้อนไขมันเส้นประสาทไขสันหลังของผู้ป่วยเด็ก 91**
ในโรงพยาบาลจุฬาลงกรณ์ จากประสบการณ์ 20 ปี
Long Term Outcome for Surgical Resection of Pediatric Spinal Lipoma in Kcmh:
20 Years Experience
เปรม กมลอำนวยกิจ, พ.บ.
กุส่าวดี จึงศิรกุลวิทย์, พ.บ., วว. (ประสาทศัลยศาสตร์)
จิระพร ออมรฟ้า, พ.บ., วว. (ประสาทศัลยศาสตร์)
- ▲ **Long-term Outcomes and Complications of Multilevel ACDF, Compared with Single-level ACDF, 103**
A Retrospective Study
Anusorn Kuruvanich, M.D.
Ekkapot Jitpun, M.D.
Teera Tangviriyapaiboon, M.D.

Seizure Outcome after Surgical Treatment for Temporal Lobe Epilepsy with Hippocampal Sclerosis

Tanatkan Kumpanont, M.D.

Teeradej Srikiwilaikul, M.D.

Department of Neurosurgery, Neurological Institute of Thailand,

Bangkok, Thailand

Abstract

Objective: To study seizure outcomes in patients with temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) and predictive factors associated with seizure outcome.

Material and Methods: One hundred and forty-seven patients with drug-resistant temporal lobe epilepsy with hippocampal sclerosis were retrospectively reviewed at Neurological Institute of Thailand between 2011 and 2021. All patients underwent temporal lobectomy and had pathologically proven hippocampal sclerosis. A minimum follow-up period was two years and seizure outcomes were classified as being seizure free and not seizure free using Engel's classification.

Results: A total of 109 patients were included in the study, there were 47 males and 62 females. The median follow-up duration was 4 years. Long-term seizure freedom at 2 years was 86.2% and at 5 years was 85.1%. Overall, 93 (85.3%) patients were seizure free (Engel I) at their last follow-up. Ninety-four (86.2%) patients were seizure free at a minimum of two years after surgery. Thirty-four patients were able to discontinue anti-seizure medication. There was 14% morbidity rate with no mortality. No predictive factors were found associated with seizure outcome in this study.

Conclusion: Temporal lobectomy is effective in drug-resistant temporal lobe epilepsy with hippocampal sclerosis. Favorable seizure free outcomes at least two years can be achieved. However, there are no predictive factors associated with seizure outcome in this study.

Keywords: Hippocampal sclerosis, Temporal lobe epilepsy, Drug-resistant epilepsy

Received: July 17, 2025 | Revised: July 30, 2025 | Accepted: August 5, 2025

*Corresponding author: Tanatkan Kumpanont, M.D.

Introduction

Epilepsy is a chronic and debilitating condition that affects millions of people worldwide^{1,2}. Temporal lobe epilepsy (TLE) is the most common type of epilepsy. Temporal lobe epilepsy with hippocampal sclerosis is the most common pathology frequently operated³. Patients with TLE-HS usually develop drug resistance^{4,5}. With medical treatment alone, the remission rate for TLE-HS ranges from only 11 - 42%⁶.

Surgery is now widely recognized as an effective and safe treatment option for patients whose seizures are not adequately controlled by medication⁷. Short-term outcomes following epilepsy surgery for TLE-HS are promising, with seizure freedom rates ranging from 70% to 90%^{8,9}. Five-year follow-up studies report seizure freedom rates of 50% to 75%¹⁰⁻¹². However, Seizure freedom when follow-up in longer term begins to decline⁶.

This study aimed to evaluate seizure-free outcomes after a minimum of two years follow-up and to identify predictive factors associated with long-term seizures outcome.

Material and Methods

Patient and data

This study retrospectively reviewed patients with drug-resistant temporal lobe epilepsy associated with hippocampal sclerosis who underwent surgical treatment at Neurological Institute of Thailand during 2011 - 2021.

All patients underwent comprehensive pre-surgical evaluation including detailed history and examination, neuropsychological testing, 1.5 or 3.0 tesla magnetic resonance imaging (MRI) and 24-hour

video-electroencephalography (EEG) monitoring. All patient's information were discussed at epilepsy management conference before surgery. If there was an undetermined or discordance imaging and video- EEG then an invasive EEG monitoring using either subdural electrodes, strip electrodes or depth electrodes were undertaken.

The inclusion criteria were as follows; (1) confirmed unilateral hippocampal sclerosis on MRI (2) pathologically confirmed hippocampal sclerosis (3) having completed minimum follow up period of two years. Patients with bilateral HS, Dual lesions on MRI, presence of other lesion on pathological examination or underwent selective amygdalohippocampectomy were excluded. All patients underwent standard anterior temporal lobectomy by a single neurosurgeon.

The data was gathered through comprehensive review of medical records, including clinical history, pre-operative evaluations, and postoperative clinical follow-up. Data collected including gender, age, age at seizure onset, age at surgery, side of surgery, duration of epilepsy, history of febrile seizure, family history of epilepsy, history of trauma, meningitis or encephalitis, history of secondary generalized tonic-clonic seizure, invasive EEG, postoperative seizure outcome and complications.

Seizure outcome

Seizure outcomes were assessed initially after surgery and during outpatient visit until the most recent follow-up using Engel's classification¹³. Seizure outcomes were classified into 4 classes; Class I (Free of disabling seizures, seizure free), Class II (Rare disabling seizures, almost seizure free), Class III (Worthwhile improvement) and Class

IV (No worthwhile improvement). Patients were categorized into 2 groups: Engel I was classified as seizure-free and Engel II-IV were not seizure free.

Statistical analysis

In this analysis, continuous variables were presented as median and interquartile range (IQR). Categorical variables were described with percentages. Differences in baseline characteristics between seizure status were analyzed using the Mann-Whitney U test for continuous variables and the Chi-square or Fisher's exact test was used for categorical variables. A univariate cox regression was used to examine the individual relationship between each variable and seizure-free status, those that achieved a *p*-value < 0.20 were selected for testing in multivariate cox regression. Hazard ratio (HR) and 95% confidence intervals (CIs) were used to illustrate the association between factors and seizure status. All probability values were two-sided and the significance level was set at *p*-value < 0.05. Statistical analyses were performed using SPSS for Windows version 16.0 (SPSS Inc., Chicago, Illinois, USA).

Results

A total of 147 patients with drug-resistance temporal lobe epilepsy associated with hippocampal sclerosis underwent temporal lobectomy between 2011-2021, 38 patients were excluded due to a loss of follow-up or lack of information in the medical record.

One hundred and nine patients (47 males and 62 females) met the inclusion criteria (Table 1). The median age at seizure onset was 13 years (range 8 to 21.5 years). The median duration of epilepsy

was 19 years (range 9 to 31 years). Median age at surgery was 35 years (range 26 to 47 years). The median duration of follow up was 4 years (range 2 to 6.5 years). Eighty-eight patients (90.7%) were right handedness.

Six patients had discordance data and underwent further invasive monitoring. Two patients had subdural electrode placement, 3 patients had bitemporal strip electrode placement and 1 patient had depth electrode placement. Fifty-eight patients (53.2%) were operated on the right.

Post-operative outcome

The seizure outcomes were classified by the Engel's classification as summarized in Table 2. Ninety-four patients (86.2%) were seizure free for at least two years. Ninety-three patients (85.3%) were seizure-free at their last follow up (Engel class I). The seizure free outcomes after surgery with yearly follow-up were as follows; 86.2% at 2 years, 92.5% at 3 years, 88.4% at 4 years, 85% at 5 years, 83.9% at 6 years, 82.5% at 7 years, 82.8% at 8 years, 76% at 9 years, 80% at 10 years, 87.5% at 11 years and 100% at 12 and 13 years (Table 3). The Kaplan-Meier curve shows overall survival of long-term seizure outcome (Figure 1). Seizure-free outcomes slightly decrease with longer follow-up period, 86.2% at 2 years, 85% at 5 years and 80% at 10 years. At last follow up, 34 patients were free from antiseizure medications.

Factors including age at epilepsy onset, duration of epilepsy, age at surgery, gender, side of surgery were not associated with seizure outcome. Additionally, other factors, including family history of epilepsy, history of trauma, history of febrile seizure, history of meningitis or encephalitis and his-

tory of secondary generalized tonic-clonic seizure were not predictive factors of seizure freedom.

There was no mortality in this study. Sixteen (14%) patients having post-operative complications

including 9 patients with meningitis, 6 patients had hemorrhage either subdural or intracerebral hemorrhage and one with ischemic stroke. There was permanent neurological deficit in one patient.

Table 1 Characteristics of patients

Factors	Seizure free (n = 82)	Not seizure free (n = 27)	HR	95%CI	p-value
Sex (%)					0.331
Male	38 (46.3)	9 (33.3)	1.00	-	
Female	44 (53.7)	18 (66.7)	1.49	0.67 - 3.32	
Age at seizure onset (years; median, IQR)	12.0, (7.8-20.2)	15.0, (10.0-23.0)	1.01	0.98 - 1.04	0.69
Duration of epilepsy (years; median, IQR)	19.0, (10.0-30.0)	20.0, (6.0-32.0)	1.00	0.97 - 1.02	0.740
Age at surgery (years; median, IQR)	35.5, (26.0-48.2)	35.0, (26.0-46.0)	1.00	0.97 - 1.03	0.990
Side of operation (%)					0.556
Left	37 (45.1)	14 (51.9)	1.26	0.59 - 2.67	
Right	45 (54.9)	13 (48.1)	1.00	-	
History of febrile seizure	33 (40.2)	10 (37.0)	0.88	0.40 - 1.94	0.758
Family history of epilepsy	3 (3.7)	3 (3.7)	0.86	0.12 - 6.38	0.887
History of trauma	6 (7.3)	3 (11.1)	1.30	0.39 - 4.36	0.665
History of meningitis/encephalitis	6 (7.3)	3 (11.1)	1.54	0.46 - 5.11	0.484
History of 2 nd generalized tonic-clonic seizure	32 (39.0)	16 (59.3)	1.86	0.86 - 4.00	0.115
Invasive monitoring	4 (4.9)	2 (7.4)	1.33	0.32 - 5.63	0.696

* Significant at 95% confidence interval ($p < 0.050$)

Table 2 Seizure outcome at last follow-up

Engel class	Patients (%)
I	93 (85.3)
II	6 (5.5)
III	9 (8.3)
IV	1 (0.9)
Total	109

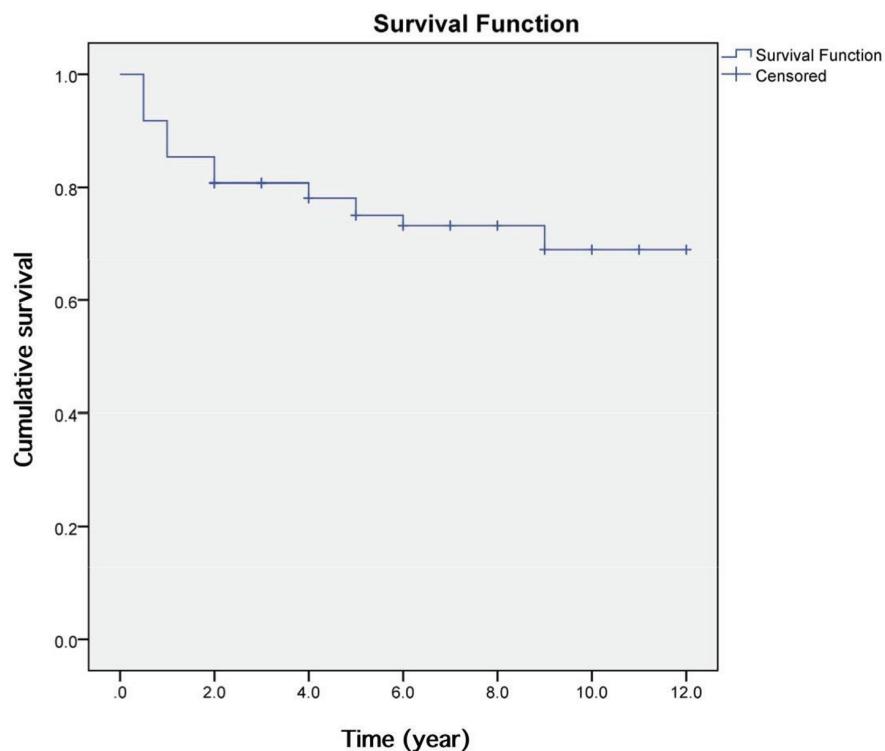


Figure 1 Kaplan-Meier curve of long-term seizure outcome

Table 3 The number of patients and seizure outcomes in longitudinal follow-up

Post-op year	Seizure free (%)	Not seizure free (%)	Total
2	94 (86.2)	15 (13.7)	109
3	87 (92.5)	7 (7.4)	94
4	69 (88.4)	9 (11.5)	78
5	57 (85)	10 (14.9)	67
6	47 (83.9)	9 (16)	56
7	33 (82.5)	7 (17.5)	40
8	29 (82.8)	6 (17.1)	35
9	19 (76)	6 (24)	25
10	12 (80)	3 (20)	15
11	7 (87.5)	1 (12.5)	8
12	4 (100)		4
13	1 (100)		1

Discussion

Overall seizure outcome

This study aims to assess long-term seizure outcomes in 109 patients who underwent temporal lobectomy with pathologically confirmed HS and had a minimum follow-up period of two years. Overall, 85.3% of patients had seizure freedom (Engel class I) at their last follow-up. Seizure freedom at 2 years and 5 years after surgery were 86.2% and 85.1% respectively. In our study, seizure outcomes were comparable to previous study which reported seizure freedom of 86% and 83% at 2 and 5 years^{14,15}. This study also shows high rates of seizure freedom on a yearly basis which concur with previous report conducted in Thailand¹⁶. The Kaplan-Meier curve shows similar seizure-free outcomes at two and five years, followed by a slight decrease in seizure-free outcomes after five years, which then tends to stabilize over the long term. (Figure 1). This indicates that stable and favorable outcomes might be expected for patients who remain seizure-free five years after surgery. Small number of patients follow-up in longer term in our study might influence seizure outcomes. However, the seizure free outcomes in our study correlate with those of other studies^{14,17} and confirm benefits of surgical treatment in drug-resistant temporal lobe epilepsy with hippocampal sclerosis.

Predictive factors for seizure outcome

Whether febrile seizure had an impact on seizure outcome of temporal lobe epilepsy with hippocampal sclerosis was still on debate. Dalio et al.¹⁷ found that patients who reported a history of febrile seizure were likely to remain seizure free. One meta-analysis study (18) also concluded that

febrile seizure correlates with good post-surgical outcome. Our study found no association between febrile seizures and seizure outcomes comparable to other study¹⁹. Since records from early childhood care of a number of patients were not available, data regarding the presence of febrile seizure as initial precipitating injuries might not be reliable enough.

History of secondarily generalized tonic-clonic seizures (2nd GTC) has been previously identified as a predictor of seizure recurrence after epilepsy surgery. Janszky et al.²⁰ reported that 2nd GTC seizures were associated with worse outcome at 2-year but not at 5-year following surgery for TLE-HS, possibly indicating more widespread cortical involvement and a distributed epileptogenic zone. However, other study²¹ has reported the presence of 2nd GTC did not have any impact on seizure outcome similar with our findings in this study.

It has been hypothesized that early-onset seizures, characteristic of mesial temporal lobe epilepsy, were associated with better postoperative outcomes^{22,23}. In this study, the median age of seizure onset was 12 years in seizure-free patients and 15 years in those who were not seizure-free. Although there was a trend suggesting that seizure-free patients had an earlier onset of seizures, the difference between the two groups was not statistically significant in our study.

Studies have suggested that a longer duration of epilepsy is associated with poor surgical outcomes²⁰, potentially due to the development of secondary epileptogenesis at sites distant from the primary lesion. However, our study found that epilepsy duration was not a predictive factor for seizure outcomes. This finding agrees with other

reports which found no association in epilepsy duration with seizure-free patients and those who continued to experience seizures²¹.

Age at the time of surgery can influence different seizure outcomes. In our study, the median age at surgery was 35.5 years. This finding agrees with Sperling et al.²⁴ which reported seizure-free patients tended to be younger at the time of surgery.

Even though, many predictive factors were reported relating to surgical outcome in temporal lobe epilepsy with hippocampal sclerosis. We found no predictive factors associated with seizure outcome in this study similar to previous study by Aull-Watschinger et al.²⁵ and a study conducted in

Thailand²⁶.

There were several limitations in this study included retrospective single cohort study and decreasing number of patients during longer follow-up period.

Conclusion

Seizure outcomes after surgery for temporal lobe epilepsy with hippocampal sclerosis had favorable outcome. Our findings including age at surgery, age of seizure onset, duration of epilepsy, presence of febrile seizures, and preoperative 2nd GTC seizures—were not predictive of seizure outcomes.

ເອກສາຮອ້າງອົບ

1. Fiest KM, Sauro KM, Wiebe S, et al. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. *Neurology*. 2017;89(6):642.
2. Leonardi M, Ustun TB. The global burden of epilepsy. *Epilepsia*. 2002;43 Suppl 6:21-5.
3. Engel J Jr. Surgery for seizures. *N Engl J Med*. 1996;334(10):647-52.
4. Kwan P, Brodie MJ. Early identification of refractory epilepsy. *N Engl J Med*. 2000;342(5):314-9.
5. Asadi-Pooya AA, Stewart GR, Abrams DJ, Sharan A. Prevalence and incidence of drug-resistant mesial temporal lobe epilepsy in the United States. *World Neurosurg*. 2017;99:662-6.
6. Hemb M, Palmini A, Paglioli E, et al. An 18-year follow-up of seizure outcome after surgery for temporal lobe epilepsy and hippocampal sclerosis. *J Neurol Neurosurg Psychiatry*. 2013;84(7):800-5.
7. Engel J Jr, McDermott MP, Wiebe S, et al. Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial. *JAMA*. 2012;307(9):922-30.
8. Quarato PP, Di Gennaro G, Mascia A, et al. Temporal lobe epilepsy surgery: different surgical strategies after a non-invasive diagnostic protocol. *J Neurol Neurosurg Psychiatry*. 2005;76(6):815-24.
9. Wiebe S, Blume WT, Girvin JP, Eliasziw M. Effectiveness and Efficiency of Surgery for Temporal Lobe Epilepsy Study Group. A randomized, controlled trial of surgery for temporal-lobe epilepsy. *N Engl J Med*. 2001;345(5):311-8.
10. McIntosh AM, Kalnins RM, Mitchell LA, Fabinyi GC, Briellmann RS, Berkovic SF. Temporal lobectomy: long-term seizure outcome, late recurrence and risks for seizure recurrence. *Brain*. 2004;127(Pt 9):2018-30.
11. Cohen-Gadol AA, Wilhelmi BG, Collignon F, et al. Long-term outcome of epilepsy surgery among 399 patients with nonlesional seizure foci including mesial temporal lobe sclerosis. *J Neurosurg*. 2006;104(4):513-24.
12. Elsharkawy AE, Alabbasi AH, Pannek H, et al. Long-term outcome after temporal lobe epilepsy surgery in 434 consecutive adult patients. *J Neurosurg*.

2009;110(6):1135-46.

13. Engel J Jr, Van Ness P, Rasmussen TB, Ojemann LM. Outcome with respect to epileptic seizures. In: Engel J Jr, editor. *Surgical treatment of the epilepsies*. 2nd ed. New York: Raven Press; 1993. p. 609-21.
14. Lowe AJ, David E, Kilpatrick CJ, et al. Epilepsy surgery for pathologically proven hippocampal sclerosis provides long-term seizure control and improved quality of life. *Epilepsia*. 2004;45(3):237-42.
15. Paglioli E, Palmini A, Paglioli E, et al. Survival analysis of the surgical outcome of temporal lobe epilepsy due to hippocampal sclerosis. *Epilepsia*. 2004;45(11):1383-91.
16. Srikiwilaikul T, Limotai C. Long-term seizure outcome after temporal lobectomy for hippocampal sclerosis. *J Med Assoc Thai*. 2018;101(1):48-52.
17. Pereira Dalio MTR, Velasco TR, Feitosa IDF, et al. Long-term outcome of temporal lobe epilepsy surgery in 621 patients with hippocampal sclerosis: clinical and surgical prognostic factors. *Front Neurol*. 2022;13:833293.
18. Tonini C, Beghi E, Berg AT, et al. Predictors of epilepsy surgery outcome: a meta-analysis. *Epilepsy Res*. 2004;62(1):75-87.
19. Tezer FI, Akalan N, Oguz KK, et al. Predictive factors for postoperative outcome in temporal lobe epilepsy according to two different classifications. *Seizure*. 2008;17(6):549-60.
20. Janszky J, Janszky I, Schulz R, et al. Temporal lobe epilepsy with hippocampal sclerosis: predictors for long-term surgical outcome. *Brain*. 2005;128(Pt 2):395-404.
21. Ozkara C, Uzan M, Benbir G, et al. Surgical outcome of patients with mesial temporal lobe epilepsy related to hippocampal sclerosis. *Epilepsia*. 2008;49(4):696-9.
22. Salanova V, Andermann F, Rasmussen T, Olivier A, Quesney L. The running down phenomenon in temporal lobe epilepsy. *Brain*. 1996;119(Pt 3):989-96.
23. Radhakrishnan K, So EL, Silbert PL, et al. Predictors of outcome of anterior temporal lobectomy for intractable epilepsy: a multivariate study. *Neurology*. 1998;51(2):465-71.
24. Sperling MR, O'Connor MJ, Saykin AJ, Plummer C. Temporal lobectomy for refractory epilepsy. *JAMA*. 1996;276(6):470-5.
25. Aull-Watschinger S, Pataria E, Czech T, Baumgartner C. Outcome predictors for surgical treatment of temporal lobe epilepsy with hippocampal sclerosis. *Epilepsia*. 2008;49(8):1308-16.
26. Srikiwilaikul T, Lerdlum S, Tepmongkol S, Shuangshoti S. Outcomes after temporal lobectomy for temporal lobe epilepsy with hippocampal sclerosis. *J Med Assoc Thai*. 2012;95(9):1173-7.

ผลลัพธ์ระยะยาวในการผ่าตัดก้อนไขมันเส้นประสาทไขสันหลังของผู้ป่วยเด็กในโรงพยาบาลจุฬาลงกรณ์ จากประสบการณ์ 20 ปี

เปรม กลอ完好วิจิ, พ.บ.

กุสาวดี จังศรีกุลวิทย์, พ.บ., วว. (ประสาทศัลยศาสตร์)

ธีระพร อมรฟ้า, พ.บ., วว. (ประสาทศัลยศาสตร์)

หน่วยประสาทศัลยศาสตร์ ภาควิชาศัลยศาสตร์

คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

บทคัดย่อ

ความเป็นมา: ปัจจุบันแนวคิดและวิธีการผ่าตัด spinal lipoma ยังเป็นที่ถกเถียงกันโดยเฉพาะในกลุ่มผู้ป่วย spinal lipoma ที่ไม่มีอาการ มีปัจจัยใดบ้างที่ทำให้เพิ่มโอกาสการเกิดไขสันหลังถูกดึงรั้ง (tethered cord syndrome) ได้

วัตถุประสงค์: เป็นการศึกษา long term outcome ในผู้ป่วย spinal lipoma ที่ได้รับการผ่าตัดในโรงพยาบาลจุฬาลงกรณ์ โดยมีจุดประสงค์เพื่อหาปัจจัยที่เพิ่มโอกาสการเกิด tethered cord syndrome

วิธีการศึกษา: เป็นการศึกษา survival analysis โดยเก็บข้อมูลผู้ป่วยเด็กโรคก้อนไขมันเส้นประสาทไขสันหลัง ที่ได้รับการผ่าตัดในโรงพยาบาลจุฬาลงกรณ์ รวมรวมข้อมูลในเด็กที่ผ่าตัดตั้งแต่เดือนกันยายน 2546 – กันยายน 2566 (20 ปี) ซึ่งเป็นการเก็บข้อมูลจากการทบทวนเวชระเบียนย้อนหลัง

ผลการศึกษา: จากประชากรทั้งหมด 69 คน ใน mean follow up time 9.6 ปี พบว่า มีค่าเฉลี่ยสำหรับเวลา ก่อนที่จะเกิดเหตุการณ์อุบัติ 15.7 ปี และมี progression-free survival (PFS) ที่ 19 ปีอยู่ที่ 84.1% โดยมีช่วงเวลา การเกิด retethering ตั้งแต่ 2 ปี ไปจนถึง 17 ปี หลังการผ่าตัดครั้งแรก เมื่อแบ่งกลุ่มย่อยเพื่อศึกษาปัจจัยที่ส่งผลต่อ อัตราการเกิด tethered cord syndrome พบร้า กลุ่มที่ไม่มีอาการก่อนผ่าตัดมี PFS อยู่ที่ 86.7% และในกลุ่มที่มี อาการมี PFS อยู่ที่ 79.2% ไม่มีความแตกต่างอย่างมีนัยสำคัญในทางสถิติ (p value = 0.519) ประเภทของ spinal lipoma กลุ่ม dorsal มี PFS อยู่ที่ 50% กลุ่ม transitional มี PFS อยู่ที่ 78.6% กลุ่ม chaotic มี PFS อยู่ที่ 94.4% กลุ่ม terminal มี PFS อยู่ที่ 89.5% ไม่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติ (p value = 0.157) extent of resection ในกลุ่ม complete หรือ near total resection มี PFS อยู่ที่ 94.7% และในกลุ่ม partial resection มี PFS อยู่ที่ 77.3% ซึ่งไม่พบร้ามีความแตกต่างอย่างมีนัยสำคัญทางสถิติ (p value = 0.071) แบ่งกลุ่ม cord-sac ratio < 0.3 , $0.3-0.5$ และ > 0.5 ซึ่งมี PFS อยู่ที่ 100%, 92.7%, และ 50% ตามลำดับ ซึ่งเป็นปัจจัยเดียวในการศึกษา ที่พบร้ามีนัยสำคัญทางสถิติ (P value = 0.002)

สรุป: จากการศึกษา long term outcome ในผู้ป่วย spinal lipoma ที่ได้รับการผ่าตัดในโรงพยาบาลจุฬาลงกรณ์ พบร้าผู้ป่วยมี progression free survival อยู่ที่ 84.1% โดยปัจจัยที่ส่งผลต่ออัตราการเกิด tethered cord syndrome คือ cord-sac ratio

คำสำคัญ: Spinal lipoma, Tethered cord syndrome, Long term outcome, Progression-free survival, Cord-sac ratio

Abstract

Long Term Outcome for Surgical Resection of Pediatric Spinal Lipoma in Kcmh: 20 Years Experience

Prem Kamolamnuaykit, M.D., Kusawadee Juengsirakulwit, M.D., Jiraphorn Amornfa, M.D.

Neurosurgery unit, Department of Surgery, Faculty of medicine, Chulalongkorn University, Bangkok, Thailand

Background: The optimal surgical approach for spinal lipoma remains controversial, particularly in asymptomatic patients. Factors contributing to an increased risk of TCS require further investigation.

Objective: This study aims to analyze the long-term outcomes of patients with spinal lipoma who underwent surgery at King Chulalongkorn Memorial Hospital and identify factors associated with an increased risk of developing TCS.

Methods: A survival analysis was conducted on pediatric patients with spinal lipoma who underwent surgery at King Chulalongkorn Memorial Hospital. Data were retrospectively reviewed for patients who underwent surgery between September 2003 and September 2023 (20 years).

Results: Among 69 patients with a mean follow-up period of 9.6 years, the mean time to progression was 15.7 years, with a progression-free survival (PFS) rate of 84.1% at 19 years. The time to retethering ranged from 2 to 17 years after the initial surgery. When analyzing risk factors for TCS, asymptomatic patients had a PFS of 86.7%, while symptomatic patients had a PFS of 79.2%, with no statistically significant difference ($p = 0.519$). The PFS rates for different spinal lipoma types were as follows: dorsal (50%), transitional (78.6%), chaotic (94.4%), and terminal (89.5%), with no significant difference ($p = 0.157$). In terms of the extent of resection, patients who underwent complete or near-total resection had a PFS of 94.7%, while those who underwent partial resection had a PFS of 77.3%, with no significant difference ($p = 0.071$). However, when stratified by cord-sac ratio, PFS rates were 100% for < 0.3 , 92.7% for $0.3-0.5$, and 50% for > 0.5 , demonstrating statistical significance ($p = 0.002$).

Conclusion: The long-term outcomes of spinal lipoma patients who underwent surgery at King Chulalongkorn Memorial Hospital showed a PFS rate of 84.1%. The cord-sac ratio was the only significant factor associated with an increased risk of developing TCS.

Keywords: Spinal lipoma, Tethered cord syndrome, Long-term outcome, Progression-free survival, Cord-sac ratio

บทนำ (Introduction)

Spinal lipoma เป็นหนึ่งในความผิดปกติที่พบได้บ่อยที่สุดใน occult spinal dysraphism (spina bifida occulta) ซึ่งเป็นกลุ่มความผิดปกติของไขสันหลังโดยมีลักษณะที่เหมือนกันอย่างหนึ่งคือการมีผิวหนังมาหุ้มปิดโดยเกิดจากความผิดปกติของการเจริญของตัวอ่อนในครรภ์ (embryogenesis)^{2,3}

Spinal lipoma มีโอกาสทำให้เกิดการตึงรังของไขสันหลัง (spinal cord tethering) ได้สูง^{4,5,6} ซึ่งจะทำให้

เกิดความผิดปกติทางระบบประสาท ได้แก่ การควบคุมการปัสสาวะ อุจจาระ การรับความรู้สึก และการควบคุมการทำงานของกล้ามเนื้อ รวมไปถึงอาการปวดบริเวณหลัง^{2,3,4}

ในปัจจุบันแนวคิดและวิธีการผ่าตัด spinal lipoma ยังเป็นที่ถกเถียงกันโดยเฉพาะในกลุ่มผู้ป่วย spinal lipoma ที่ไม่มีอาการ และเกิดเป็นคำามากมาย ดังเช่น การผ่าตัดในผู้ป่วยที่ไม่มีอาการเพื่อป้องกันการเกิดการตึงรังของไขสันหลังมีประโยชน์ต่อผู้ป่วยจริงหรือไม่ และควร

ผ่าตัดอย่างไรเพื่อที่จะป้องกันการเกิดไขสันหลังถูกดึงรั้งในระยะยาวได้ นอกจานี้ยังมีปัจจัยไหนบ้างที่ทำให้เพิ่มโอกาสการเกิดไขสันหลังถูกดึงรั้งได้

การศึกษาที่ผ่านมาแสดงให้เห็นว่าปัจจัยที่เพิ่มโอกาสการเกิด tethered cord syndrome ได้แก่ กลุ่มผู้ป่วยอายุน้อย, ประเภทของ lipoma, extent of resection, cord-sac ratio, เคสที่เคยผ่าตัดซ้ำ (redo surgery) เป็นต้น

การศึกษาในครั้งนี้เป็นการศึกษา long term outcome ในผู้ป่วย spinal lipoma ได้รับการผ่าตัดในโรงพยาบาลจุฬาลงกรณ์ โดยมีจุดประสงค์เพื่อหาปัจจัยที่เพิ่มโอกาสการเกิด tethered cord syndrome

วิธีดำเนินงานวิจัย (Methods)

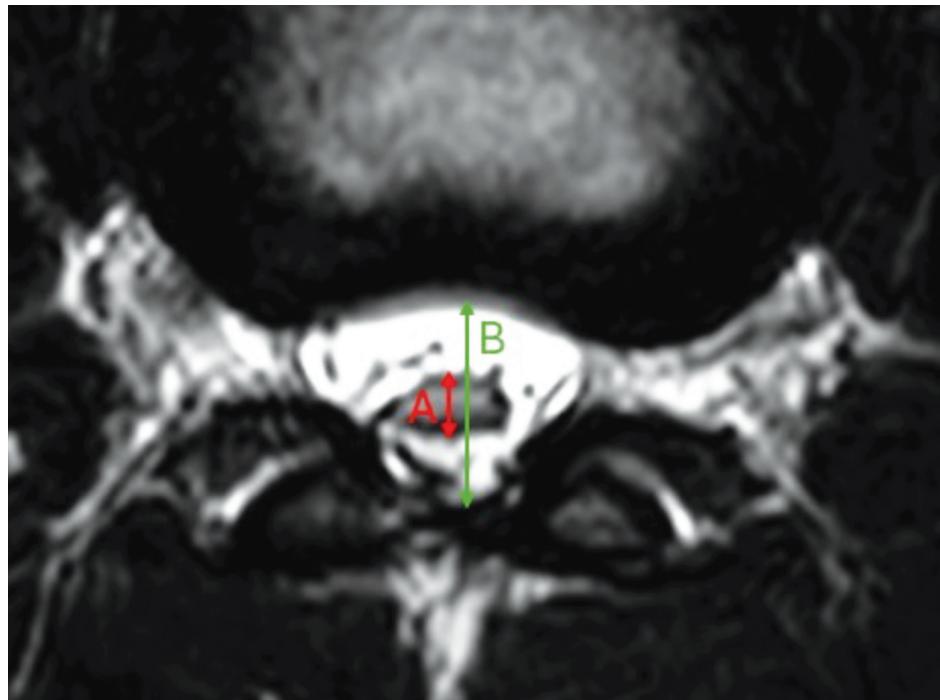
2.1 การออกแบบการศึกษาวิจัยและการคัดเลือกผู้ป่วย

ประชากรที่ศึกษา คือผู้ป่วยเด็กโรคก้อนไขมันเส้นประสาทไขสันหลังที่ได้รับการผ่าตัดในโรงพยาบาลจุฬาลงกรณ์ โดยจะรวบรวมข้อมูลในเด็กที่ผ่าตัดตั้งแต่เดือน กันยายน 2546 - กันยายน 2566 (20 ปี) และได้ขออนุญาติใช้เวชระเบียนจากผู้อำนวยการโรงพยาบาลจุฬาลงกรณ์ก่อนเริ่มดำเนินการ

เกณฑ์การคัดเลือกอาสาสมัครเข้าร่วมโครงการวิจัย (inclusion criteria): ผู้ป่วยเด็กอายุไม่เกิน 15 ปี ที่ได้รับการผ่าตัดในโรงพยาบาลจุฬาลงกรณ์ และได้รับการติดตามการรักษาหลังจากผ่าตัดอย่างน้อย 2 ปี

เกณฑ์การคัดเลือกอาสาสมัครออกจากโครงการวิจัย (exclusion criteria): ผู้ป่วยที่ได้รับการติดตามการ

รักษาหลังจากผ่าตัดไม่เกิน 2 ปี หรือข้อมูลที่บันทึกไว้ในเวชระเบียนไม่ครบ


2.2 การเก็บรวบรวมข้อมูล

1. ข้อมูลประชากรพื้นฐาน ได้แก่ อายุ เพศ อาการทางคลินิกก่อนและหลังจากการผ่าตัด อาการทางระบบประสาท อาการทางระบบขับถ่ายปัสสาวะ การตรวจร่างกายทางระบบประสาทและระบบขับถ่ายปัสสาวะ ก่อนและหลังผ่าตัด รวมไปถึงภาวะแทรกซ้อนทั้งหมดที่เกิดขึ้นจากการผ่าตัด

2. ขอบเขตของการผ่าตัด (Extent of resection) แบ่งเป็น 2 กลุ่ม โดยกลุ่มแรกเป็นกลุ่ม Gross-total resection หรือ Near total resection โดยวัดจาก postoperative MRI แล้วพบว่าก้อนไขมันเส้นประสาทไขสันหลังตัดไปมากกว่า 90% และกลุ่ม partial resection โดยวัดจาก postoperative MRI แล้วพบว่าก้อนไขมันเส้นประสาทไขสันหลังถูกตัดไปน้อยกว่า 90%

3. ประเภทของ spinal lipoma ในการศึกษานี้เก็บรวบรวมโดยแบ่งออกเป็น 4 ประเภท โดยอ้างอิงจากการศึกษาของ Pang และคณะ 7,8,9 ได้แก่ dorsal, transitional, chaotic, และ terminal โดย fatty filum terminale จะไม่ได้รับการคัดเลือกเข้ามาในการศึกษานี้

4. Cord-sac ratio คืออัตราส่วนระหว่างความยาวเส้นผ่านศูนย์กลางของ spinal cord เทียบกับ thecal sac โดยวัดในบริเวณที่ได้รับการผ่าตัดหรือมีพยาธิสภาพโดยคำนวณจากภาพ T2-weighted MRI ใน axial view ดังแสดงตัวอย่างในรูปที่ 1

รูปที่ 1 การวัด cord-sac ratio เส้นหัวลูกศรสีแดง A แสดงเส้นผ่านศูนย์กลางของ spinal cord หรือ neural placode, เส้นหัวลูกศรสีเขียว B แสดงเส้นผ่านศูนย์กลางของ thecal sac

2.3 การวิเคราะห์ข้อมูล และสถิติที่ใช้ในการวิเคราะห์

การวิเคราะห์ข้อมูลทางสถิติทั้งหมดใช้โปรแกรม IBM SPSS Version 27th ในการคำนวณ โดยกำหนดระดับนัยสำคัญทางสถิติที่ p value < 0.05 บ่งชี้ว่ามีนัยสำคัญทางสถิติ

การศึกษานี้มุ่งศึกษา Progression free survival (PFS) method และคำนวณปัจจัยที่ส่งผลต่อความเสี่ยงต่อการเกิดภาวะเส้นประสาทไขสันหลังถูกตีบตันโดยใช้ Kaplan-Meier method และ Log-rank test

ผลการศึกษา (Result)

3.1 Preoperative and Early postoperative status

จากการทบทวนเวชระเบียนตั้งแต่เดือน กันยายน 2546 ถึง กันยายน 2566 รวม 20 ปี ได้กลุ่มประชากรทั้งหมด 133 ราย มีผู้ป่วยที่ผ่านเข้าเกณฑ์การคัดเลือกในการศึกษาทั้งหมด 69 ราย เป็นเพศชาย 32 คน เพศหญิง 37 คน โดยผู้ป่วยมีอายุเฉลี่ย 2.1 ปี ในประชากรที่ศึกษามี

ความเกี่ยวข้องกับกลุ่มอาการอื่น 8 คน ได้แก่ VACTERL 2 ราย, anorectal malformation 2 ราย และกลุ่มความผิดปกติอื่น ได้แก่ OEIS, cloacal extrophy, hip dysplasia, caudal regression syndrome อย่างละ 1 ราย สำหรับประเภทของ spinal lipoma ประกอบด้วย dorsal, transitional, chaotic, และ terminal type ร้อยละ 5.8, 40.6, 26.1, และ 27.5 ตามลำดับ มีผู้ป่วยที่ไม่มีความผิดปกติทางระบบประสาทหรือการขับถ่าย 45 ราย มีอาการผิดปกติ 24 ราย ประกอบด้วย motor weakness ร้อยละ 18.8 sensory deficit ร้อยละ 10.1 urological deficit ร้อยละ 27.5 (ตารางที่ 1)

ประเภทของ spinal lipoma ใน การศึกษานี้ได้แบ่งออกเป็น 4 ประเภท ตาม classification ของ Pang โดยที่ในการศึกษานี้ตัดกลุ่ม fatty filum ที่เป็นส่วนหนึ่งของ terminal type ออกไป จากผู้ป่วย 69 คน เป็น dorsal type 4 คน (5.8%) transitional type 28 คน (40.6%) chaotic type 18 คน (26.1%) และ terminal type 19 คน (27.5%)

สำหรับ extent of resection แบ่งได้เป็น complete หรือ near total resection ร้อยละ 30.2 และ subtotal resection ร้อยละ 69.8 และในส่วนของ cord-sac ratio หลังจากผ่าตัดมีค่าเฉลี่ยอยู่ที่ 0.45 ± 0.15

และการศึกษานี้ภาวะแทรกซ้อนหลังจากการผ่าตัดเกิดขึ้นในผู้ป่วย 5 ราย คิดเป็นร้อยละ 7.2 ผลแยก 1 ราย cerebrospinal fluid leakage 2 ราย ปอดติดเชื้อ 1 ราย และติดเชื้อในทางเดินปัสสาวะ 1 ราย (ตารางที่ 1)

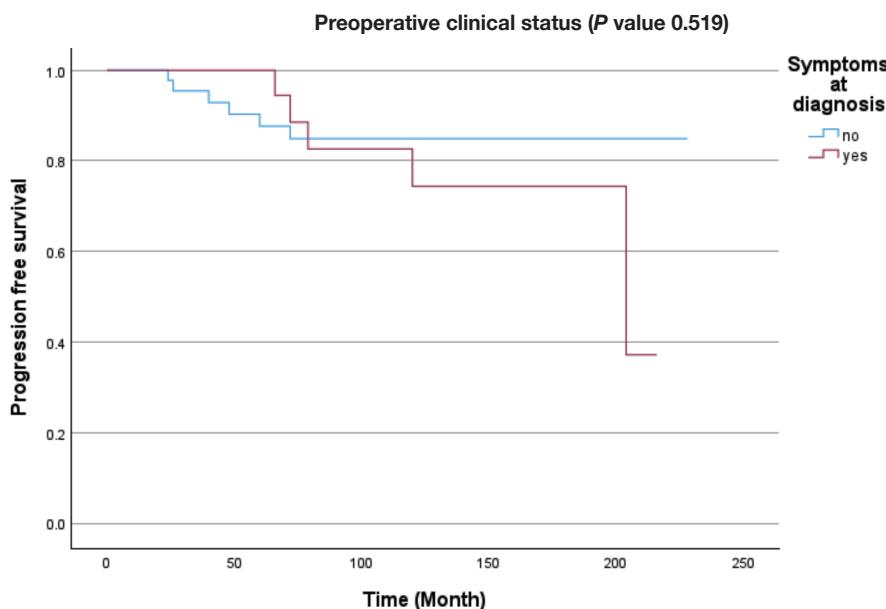
ตารางที่ 1 ข้อมูลพื้นฐานของประชากร

Characteristics	Value
Demographics	
Sex (%)	
Male	32 (46.4)
Female	37 (53.6)
Age, months	
Range (Min-Max)	1 – 180
Mean (SD)	25.23 (38)
Associated syndromes (%)	8 (11.6)
VACTERL	2 (2.9)
Others	6 (8.7)
Type of Lipoma (%)	
Dorsal	4 (5.8)
Transitional	28 (40.6)
Chaotic	18 (26.1)
Terminal	19 (27.5)
Clinical Presentation (%)	
Symptomatic	24 (34.8)
Asymptomatic	45 (65.2)
Cutaneous manifestations (%)	63 (91.3)
Mass	57 (82.6)
Skin dimple	9 (13)
Skin tag	3 (4.4)
Neurological Presentations (%)	
Motor weakness	13 (18.8)
Sensory deficit	7 (10.1)
Urological deficit (%)	19 (27.5)
Extent of Resection (%)	
Complete/Neartotal resection	19 (30.2)
Subtotal resection	44 (69.8)
Cord-Sac ratio	
Range (Min-Max)	0.2 – 0.79
Mean \pm SD	0.45 ± 0.15
Complications (%)	5 (7.2)
Wound complications	1 (1.4)
CSF leak	2 (2.9)
Others	2 (2.9)
Follow up duration, years	
Range (Min-Max)	2 – 20
Mean \pm SD	9.6 ± 4.7
Retethering (%)	11 (15.9)
Duration to retethering, years	
Mean \pm SD	8.6 ± 4.4

ในช่วงการติดตามการรักษา 6 เดือนแรกหลังจากการผ่าตัด จากผู้ป่วย 69 คน มี 65 คน ที่อาการทางระบบประสาทคงที่ 2 คนอาการดีขึ้น และอีก 2 คนมีอาการแย่ลง และในส่วนของอาการทางระบบขับถ่ายปัสสาวะ 63 คน อาการคงที่ 6 คนมีอาการแย่ลง ตั้งแสดงในตารางที่ 2

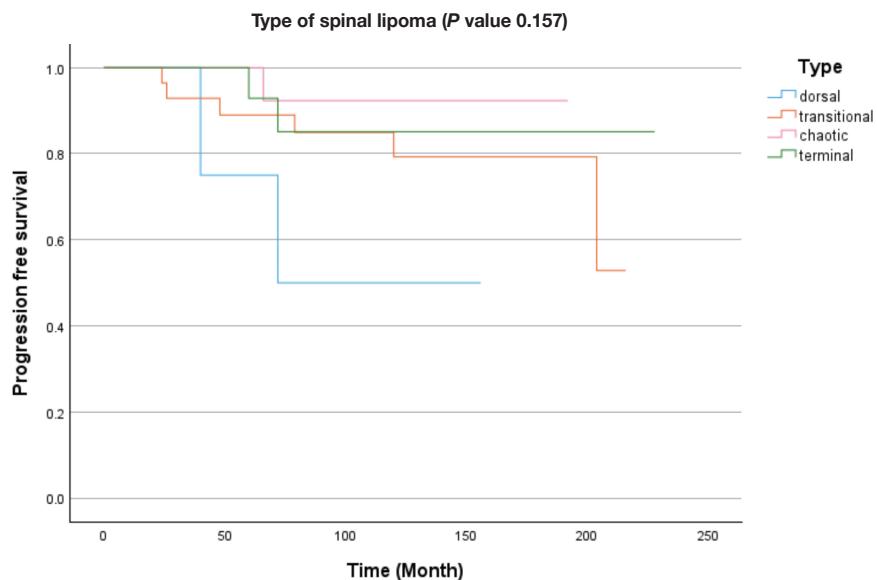
ตารางที่ 2 Early postoperative status จากการติดตามการรักษาในช่วง 6 เดือนแรกหลังการผ่าตัด

Early postoperative status	Stable	Improved	Worsened
Postoperative Neurological status (%)	65 (94.2)	2 (2.9)	2 (2.9)
Postoperative urological status (%)	63 (91.3)	0	6 (8.7)

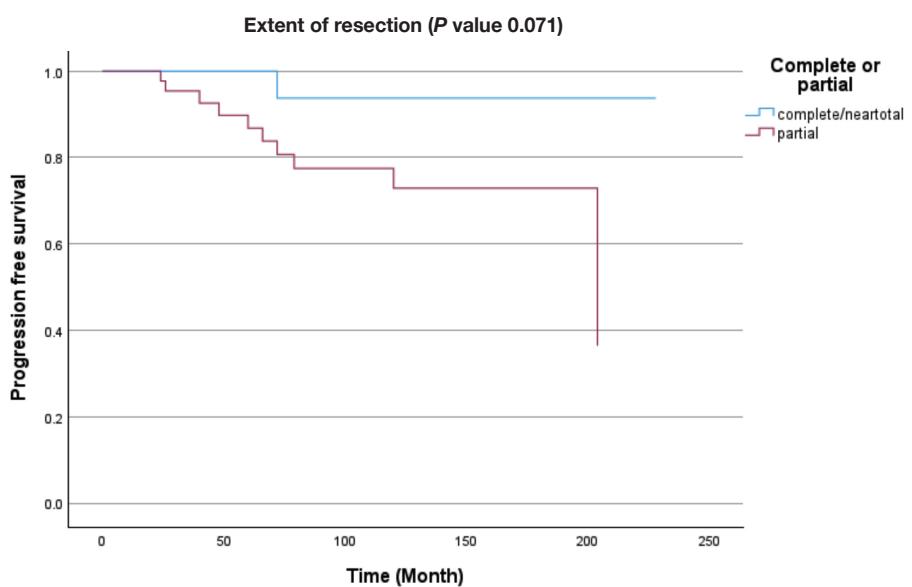

3.2 Retethering-free survival analysis

ในการศึกษาครั้งนี้ได้มีการแบ่งกลุ่มย่อยเพื่อเปรียบเทียบอัตราการเกิดกลุ่มอาการเส้นประสาทไขสันหลังถูกดึงรั้ง โดยผ่านการวิเคราะห์ทางสถิติด้วย Kaplan-Meier และ Log-rank test แสดงให้เห็นว่าจากทั้ง 69 ราย มีค่าเฉลี่ยสำหรับเวลา ก่อนที่จะเกิดเหตุการณ์อยู่ที่ 15.7 ปี และมี PFS ที่ 19 ปี อยู่ที่ 84.1% ในผู้ป่วยที่เกิดการ retethering เร็วที่สุดอยู่ที่ 2 ปีหลังจากการผ่าตัดครั้งแรก

ในส่วนของระยะเวลาที่ใช้ในการติดตามการรักษา มีค่าเฉลี่ยอยู่ที่ 9.6 ปี โดยในช่วงที่เก็บข้อมูลมีช่วงระยะเวลา (range) ที่ผู้ป่วยมาติดตามการรักษาตั้งแต่ 2 ปี ไปจนถึง 20 ปี (ตารางที่ 1)


ส่วนผู้ป่วยที่เกิด retethering นานสุดอยู่ที่ 17 ปีหลังการผ่าตัดครั้งแรก โดยผู้ป่วยที่เกิด retethering ได้รับการผ่าตัดแก้ไข ทั้งหมด

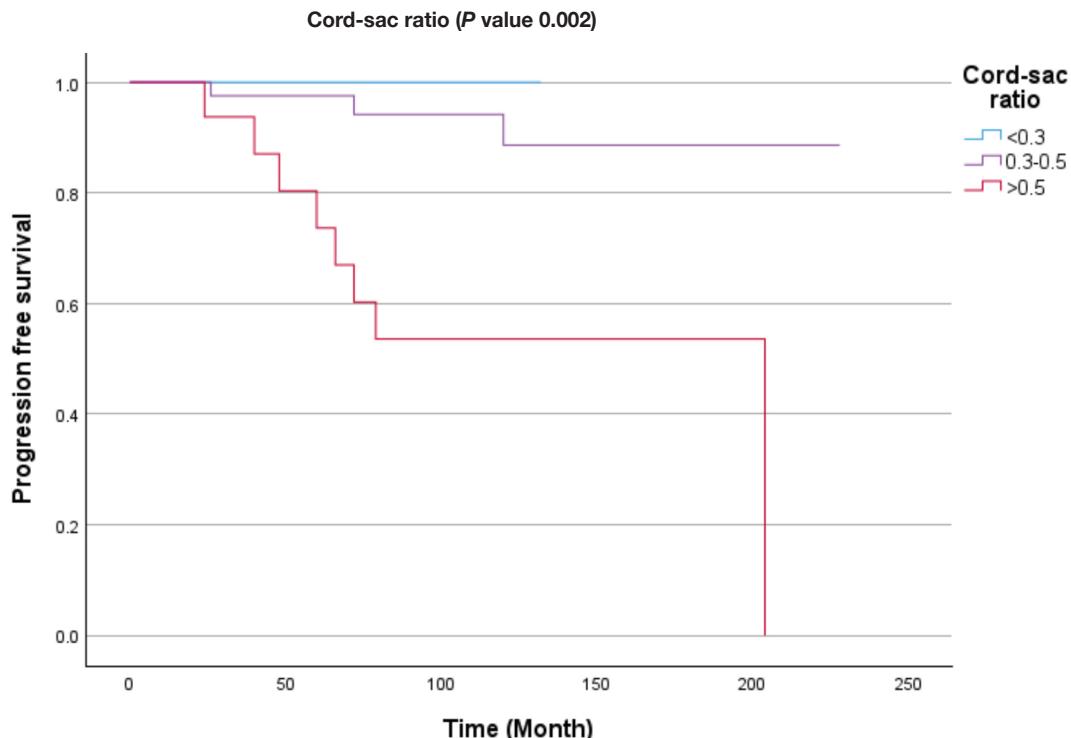
ในการแบ่งกลุ่มเปรียบเทียบกลุ่มผู้ป่วยที่มีอาการและไม่มีอาการก่อนผ่าตัด การวิเคราะห์ทางสถิติแสดงให้เห็นว่า กลุ่มที่ไม่มีอาการ PFS อยู่ที่ 86.7% และในกลุ่มที่มีอาการมี PFS อยู่ที่ 79.2% ไม่มีความแตกต่างอย่างมีนัยสำคัญในทางสถิติ ($p = 0.519$) (รูปที่ 2)



รูปที่ 2 กราฟ Kaplan-Meier ระหว่างกลุ่มผู้ป่วยที่มีอาการ และไม่มีอาการก่อนผ่าตัด การวิเคราะห์ทางสถิติแสดงให้เห็นว่า กลุ่มที่ไม่มีอาการ PFS อยู่ที่ 86.7% และในกลุ่มที่มีอาการมี PFS อยู่ที่ 79.2% ไม่มีความแตกต่างอย่างมีนัยสำคัญในทางสถิติ ($p = 0.519$)

การวิเคราะห์ทางสถิติในกลุ่มประเทของ spinal lipoma กลุ่ม dorsal มี PFS อยู่ที่ 50% กลุ่ม transitional มี PFS อยู่ที่ 78.6% กลุ่ม chaotic มี PFS อยู่ที่ 94.4% กลุ่ม terminal มี PFS อยู่ที่ 89.5% และจากการวิเคราะห์พบว่าไม่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติ (p value = 0.157) (รูปที่ 3)

รูปที่ 3 กราฟ Kaplan-Meier ในกลุ่มประเทของ spinal lipoma กลุ่ม dorsal มี PFS อยู่ที่ 50% กลุ่ม transitional มี PFS อยู่ที่ 78.6% กลุ่ม chaotic มี PFS อยู่ที่ 94.4% กลุ่ม terminal มี PFS อยู่ที่ 89.5% และจากการวิเคราะห์พบว่าไม่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติ (p value = 0.157)



รูปที่ 4 กราฟ Kaplan-Meier เปรียบเทียบความแตกต่างระหว่าง extent of resection ในกลุ่ม complete หรือ near total resection มี PFS อยู่ที่ 94.7% และในกลุ่ม partial resection มี PFS อยู่ที่ 77.3% ซึ่งไม่พบว่ามีความแตกต่างอย่างมีนัยสำคัญทางสถิติ (p value = 0.071)

กลุ่มเปรียบเทียบความแตกต่างระหว่าง extent of resection ในกลุ่ม complete หรือ near total resection มี PFS อยู่ที่ 94.7% และในกลุ่ม partial resection มี PFS อยู่ที่ 77.3% ซึ่งไม่พบว่ามีความแตกต่างอย่างมีนัยสำคัญทางสถิติ (p = value 0.071) (รูปที่ 4)

สำหรับกลุ่มเปรียบเทียบ cord-sac ratio ได้มีการแบ่งกลุ่มออกเป็น 3 กลุ่ม ได้แก่ cord-sac ratio < 0.3 , $0.3-0.5$ และ > 0.5 ซึ่งมี PFS อยู่ที่ 100%, 92.7%, และ

50% ตามลำดับ และจากการวิเคราะห์พบว่ามีนัยสำคัญทางสถิติ ($P = \text{value } 0.002$) (รูปที่ 5)

รูปที่ 5 กราฟ Kaplan-Meier แบ่งกลุ่ม cord-sac ratio < 0.3 , $0.3-0.5$ และ > 0.5 ซึ่งมี PFS อยู่ที่ 100%, 92.7%, และ 50% ตามลำดับ และจากการวิเคราะห์พบว่ามีนัยสำคัญทางสถิติ ($P \text{ value} = 0.002$)

ผลการวิจัย (Discussions)

4.1 สรุปผลลัพธ์ระยะยาวของผู้ป่วย spinal lipoma

การศึกษานี้ได้ประเมิน ผลลัพธ์ก่อนและหลังผ่าตัดของผู้ป่วย spinal lipoma รวมถึงการวิเคราะห์ Retethering-free survival โดยใช้ Kaplan-Meier และ Cox Regression Analysis ในช่วงเวลาการติดตามผลเฉลี่ย (mean follow up time) 9.6 ปี พบว่า มีค่าเฉลี่ยสำหรับเวลา ก่อนที่จะเกิดเหตุการณ์อยู่ที่ 15.7 ปี และมี PFS ที่ 19 ปี อยู่ที่ 84.1% โดยมีช่วงเวลา (range) ของการเกิด retethering ตั้งแต่ 2 ปี ไปจนถึง 17 ปี หลังการผ่าตัดครั้งแรก ซึ่งมีผลลัพธ์ที่ใกล้เคียงกับการศึกษาของ Pang ที่มี PFS อยู่ที่ 82.8%⁸

4.2 ความสัมพันธ์ระหว่างปัจจัยต่างๆ กับการเกิด Retethering

ในส่วนของการก่อนผ่าตัด (Preoperative Neurological Status) ไม่พบว่ามีผลต่อ PFS อย่างมีนัยสำคัญ ($\rho = 0.519$) ถึงแม้ว่าในการศึกษานี้ กลุ่มผู้ป่วยที่ไม่มีอาการก่อนผ่าตัดมี PFS ที่ดีกว่ากลุ่มที่มีอาการก่อนผ่าตัดเพียงเล็กน้อย (86.7% และ 79.2%) ซึ่งสอดคล้องกับการศึกษาก่อนหน้าที่ระบุว่า ผู้ป่วยที่มีอาการทางระบบประสาท ก่อนผ่าตัด อาจไม่ได้ส่งผลโดยตรงต่อโอกาสเกิด retethering⁷ นอกจากนี้ในกลุ่มผู้ป่วยที่ไม่มีอาการ (asymptomatic) มี PFS อยู่ที่ 86.7% เมื่อเปรียบเทียบกับการศึกษาของ Kulkarni และคณะ¹⁰ ที่ศึกษา

เปรียบเทียบกลุ่มผู้ป่วยที่ไม่มีอาการและได้รับการรักษาแบบ conservative treatment และ prophylaxis surgery มี risk of neurological deterioration ที่ 9 ปี อายุที่ 33% และ 40% ตามลำดับ ในขณะที่การศึกษานี้ จะเห็นได้ว่าการผ่าตัด prophylaxis surgery มี risk of neurological deterioration ที่ 15 ปี อายุที่ 13.3% เป็นข้อสนับสนุนว่า prophylaxis surgery มีโอกาสที่จะเกิด tethered cord syndrome ได้น้อยกว่า natural history ของโรค ซึ่งสอดคล้องกับหลักการศึกษาที่แนะนำให้ผ่าตัดก่อนที่ผู้ป่วยจะมีอาการจาก tethered cord syndrome¹¹⁻¹⁴

ในประเภทของ spinal lipoma แม้จะพบแนวโน้มว่า กลุ่ม chaotic และ terminal type มี PFS สูงกว่า แต่ไม่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติ ($p = 0.157$) ซึ่งแตกต่างจากการศึกษาที่ผ่านมา^{8,15,16} ที่กลุ่ม dorsal จะมี PFS ที่ดีกว่า กลุ่ม transitional และ chaotic ตามลำดับ ส่วนหนึ่งอาจเป็นเพราะความแตกต่างทางด้านจำนวนประชากรของแต่ละ type คือ dorsal type 4 คน (5.8%) transitional type 28 คน (40.6%) chaotic type 18 คน (26.1%) และ terminal type 19 คน (27.5%) และในผู้ป่วย dorsal type นั้น มีการบิดของ spinal cord หรือ placode rotation จาก lipoma ทำให้ lipoma ส่วนใหญ่ไปอยู่ด้านข้างของ spinal canal และทำให้ nerve root บางส่วนพลิกมาอยู่ฝั่ง dorsal ซึ่งทำให้ยากต่อการ resection และ reconstruction ดังนั้นจากการศึกษานี้อาจแปลผลได้ว่า ลักษณะความสัมพันธ์ทางด้าน anatomy ของ lipoma กับ cord อาจมีผลต่อการผ่าตัด และส่วนผลต่อผลลัพธ์ในระยะยาวได้ ซึ่งในส่วนของการหมุนตัวของ neural placode นี้มีการศึกษาเชื่อว่าเป็นผลมาจากการพัฒนาที่ผิดแต่กำเนิด (congenital cause) มากกว่าสาเหตุทางกล เช่น การดึงรัดของเส้นประสาท (mechanical cause)¹⁷

ในแง่ของ extent of resection แม้ว่ากลุ่มที่ได้รับ complete/near Total Resection จะมี PFS สูงกว่า

(94.7%) เมื่อเทียบกับ partial resection (77.3%) แต่ยังไม่มีนัยสำคัญทางสถิติ ($p = 0.071$) โดยเมื่อเทียบกับการศึกษาที่ผ่านมา มีทางการศึกษารายงานว่า extent of resection มีผลต่ออัตราการเกิด tethered cord syndrome^{4,18} ซึ่งอาจเกิดจาก ข้อจำกัดด้านขนาดกลุ่มตัวอย่าง หรืออาจมีปัจจัยอื่นที่ส่งผลต่อการเกิด Retethering

สำหรับ cord-sac ratio พบร่วมกับ cord-sac ratio หลังผ่าตัดมีความสัมพันธ์อย่างมีนัยสำคัญกับ PFS ($p = 0.002$) ซึ่งได้ข้อสรุปใกล้เคียงกันกับหลักการศึกษา^{8,19-21} โดยกลุ่มที่มี cord-sac ratio < 0.3 มี PFS 100%, กลุ่ม 0.3-0.5 มี PFS อายุที่ 92.7% ในขณะที่ กลุ่มที่มี cord-sac ratio > 0.5 มี PFS ต่ำสุดเพียง 50% โดยเมื่อเทียบกับการศึกษาของ Pang และคณะ⁷⁻⁹ พบร่วมกับกลุ่มที่ cord-sac ratio < 0.3 และ 0.3-0.5 มี PFS ใกล้เคียงกันกับการศึกษานี้ (96.9% และ 86.2% ตามลำดับ) ในกลุ่มที่ cord-sac ratio > 0.5 นั้น พบร่วมกับ PFS ในการศึกษานี้แย่กว่าของศึกษาของ Pang (78.3%) จากข้อมูลดังกล่าวจะเห็นได้ว่า มีปัจจัยหลายอย่างที่ส่งผลต่อ cord-sac ratio ได้แก่ ขนาดของ cord, residual lipoma, thecal sac หลังการผ่าตัด ดังนั้นถ้าสามารถลด residual lipoma ได้ หรือเพิ่มขนาดของ thecal sac ให้กว้างขึ้น เช่นการทำ duraplasty ก็จะส่งผลต่อ cord-sac ratio และ PFS ได้ ซึ่งก็ได้มีหลายการศึกษาที่สนับสนุนการเพิ่มพื้นที่ของ thecal sac โดยการทำ duraplasty^{8,9,21}

นอกจากนี้ยังมีปัจจัยอื่นๆ ที่คาดว่าจะส่งผลต่อการเกิด retethering ได้ เช่น การเย็บ pia to pia หรือการนองค์ว่าหลังจากการผ่าตัดซึ่งอาจเป็นประเด็นที่ต้องทำการศึกษาต่อไป

สรุป (Conclusion)

จากการศึกษา long term outcome ในผู้ป่วย spinal lipoma ที่ได้รับการผ่าตัดในโรงพยาบาลจุฬาลงกรณ์ พบร่วมกับปัจจัย progression free survival ที่ 19 ปี อายุ

ที่ 84.1% โดยปัจจัยที่ส่งผลต่ออัตราการเกิด tethered cord syndrome คือ cord-sac ratio โดยขนาดของ cord, residual lipoma, thecal sac หลังการผ่าตัด ดัง

นั้นถ้าสามารถลด residual lipoma ได้ หรือเพิ่มขนาดของ thecal sac ให้กว้างขึ้น เช่นการทำ duraplasty ก็จะส่งผลต่อ cord-sac ratio และ PFS ได้

เอกสารอ้างอิง

1. Morioka T, Murakami N, Shimogawa T, Mukae N, Hashiguchi K, Suzuki SO, et al. Neurosurgical management and pathology of lumbosacral lipomas with tethered cord. *Neuropathology*. 2017;37(5):385-92.
2. Blount JP, Elton S. Spinal lipomas. *Neurosurg Focus*. 2001;10(1):e3.
3. Finn MA, Walker ML. Spinal lipomas: clinical spectrum, embryology, and treatment. *Neurosurg Focus*. 2007;23(2):E10.
4. Pierre-Kahn A, Zerah M, Renier D, Cinalli G, Sainte-Rose C, Lellouch-Tubiana A, et al. Congenital lumbosacral lipomas. *Childs Nerv Syst*. 1997;13(6):298-334.
5. La Marca F, Grant JA, Tomita T, McLone DG. Spinal lipomas in children: outcome of 270 procedures. *Pediatr Neurosurg*. 1997;26(1):8-16. doi:10.1159/000121155.
6. Chapman P, Stieg PE, Magge S, Barnes P, Feany M. Spinal lipoma controversy. *Neurosurgery*. 1999;44(1):186-92. doi:10.1097/00006123-199901000-00113.
7. Pang D, Zovickian J, Oviedo A. Long-term outcome of total and near-total resection of spinal cord lipomas and radical reconstruction of the neural placode: Part I—surgical technique. *Neurosurgery*. 2009;65(3):511-29.
8. Pang D, Zovickian J, Oviedo A. Long-term outcome of total and near-total resection of spinal cord lipomas and radical reconstruction of the neural placode: Part II—outcome analysis and preoperative profiling. *Neurosurgery*. 2010;66(2):253-73.
9. Pang D, Zovickian J, Wong ST, Hou YJ, Moes GS. Surgical treatment of complex spinal cord lipomas. *Childs Nerv Syst*. 2013;29(9):1485-513.
10. Kulkarni HV, Pierre-Kahn A, Zerah M. Conservative management of asymptomatic spinal lipomas of the conus. *Neurosurgery*. 2004;54(4):868-75.
11. Hoffman HJ, Taecholarn C, Hendrick EB, Humphreys RP. Management of lipomyelomeningoceles: experience at the Hospital for Sick Children, Toronto. *J Neurosurg*. 1985;62(1):1-8. doi:10.3171/jns.1985.62.1.0001.
12. La Marca F, Grant JA, Tomita T, McLone DG. Spinal lipomas in children: outcome of 270 procedures. *Pediatr Neurosurg*. 1997;26(1):8-16. doi:10.1159/000121155.
13. McLone DG, Mutluer S, Naidich TP. Lipomeningoceles of the conus medullaris. In: Raimondi AJ, editor. *Concepts in Pediatric Neurosurgery*. Vol. 3. Basel: Karger; 1983. p.170-7.
14. Herman JM, McLone DG, Storrs BB, Dauser RC. Analysis of 153 patients with myelomeningocele or spinal lipoma reoperated upon for a tethered cord: presentation, management and outcome. *Pediatr Neurosurg*. 1993;19(5):243-9. doi:10.1159/000120739.
15. Wykes V, Desai D, Thompson DN. Asymptomatic lumbosacral lipomas: a natural history study. *Childs Nerv Syst*. 2012;28(10):1731-9. doi:10.1007/s00381-012-1775-z.
16. Warder DE. Tethered cord syndrome and occult spinal dysraphism in children: consensus on a complex diagnosis. *J Neurosurg*. 2001;94(2 Suppl):1-8.
17. Jones V, Thompson D. Placode rotation in transitional lumbosacral lipomas: are there implications for origin and mechanism of deterioration? *Childs Nerv Syst*. 2018;34(8):1557-62. doi:10.1007/s00381-018-3782-1.
18. Nejat F, El Khashab M, Gohar M, Shafie M, El-Khashab M, Ziyal I. Predictors of retethering after

primary spinal lipoma surgery: a prospective study.
J Neurosurg Pediatr. 2014;13(4):451-6.

19. Fletcher NA, Oakes WJ. The relationship of spinal cord sac ratio to outcome after untethering operations. Pediatr Neurosurg. 1999;30(5):247-52.

20. Maher CO, Muraszko KM, Garton HJ, Buchman SR, Naheedy MH, Ecklund K. Surgical outcomes in tethered cord syndrome associated with spinal lipoma. Neurosurgery. 2010;66(5):980-5.

21. Kang JK, Lee IW, Jeun SS. Surgical treatment and outcome of spinal lipoma: experience with 68 cases. J Neurosurg Pediatr. 2000;92(1):24-30.

ภาคพนวก

Type of spinal lipoma ตาม classification ของ Pang และคณะ⁹ สามารถแบ่งได้เป็น 4 ประเภทดังนี้

1. Dorsal Lipoma

ใน dorsal lipoma ตัวเนื้องอกไขมันจะยึดเกาะกับพื้นผิวด้าน dorsal ของไขสันหลังบริเวณ lumbar spinal cord เท่านั้น และจะไม่ไปยุ่งเกี่ยวกับปลาย conus โดยเส้นแบ่งเขตของเนื้องอกไขมัน ไขสันหลัง และเยื่อหุ้มไขสันหลังจะมีเส้นแบ่งอย่างชัดเจนเรียกว่า fusion line ซึ่งลักษณะของ fusion line นั้น อาจมีลักษณะเป็นวงกลม หรือวงรีก็ได้ โดยจะแบ่งแยกทางเข้าของ dorsal nerve root, nerve root และ lipoma ออกจากกัน ดังนั้นเนื้องอกไขมันชนิดนี้จะไม่มีการเกาะกับ nerve root หรือบริเวณทางเข้าของ dorsal nerve root ใดๆเลย โดย lipoma จะยึดติดกับก้านไขมัน (stalk) ด้านหลังผ่าน defect ของเยื่อหุ้มไขสันหลัง ไปเชื่อมต่อกับ extradural fat

2. Transitional lipoma

ด้าน rostral ของ transitional lipoma มีลักษณะคล้ายคลึงกับ dorsal lipoma โดยจะเห็นของเขตของเนื้องอกแบ่งแยกจากไขสันหลังชัดเจนผ่าน fusion line และ lipoma จะไม่ไปยุ่งเกี่ยวกับ nerve root หรือทางเข้าของ dorsal nerve root แต่ใน transitional lipoma จะต่างจาก dorsal lipoma ตรงที่เนื้องอกไขมันจะเกาะกับไขสันหลังไปจนถึงปลาย conus โดยขอบของ lipoma จะตัดขวางในแนว ventrocaudal ไปสู่ปลายของ conus ดังนั้น lipoma จะเกาะตั้งแต่ lumbar spinal cord ไปจนถึง conus ทั้งหมด

อีกหนึ่งสิ่งที่แตกต่างจาก dorsal type คือ รอยต่อระหว่าง lipoma กับ spinal cord จะไม่ได้วางตัวใน

แนว horizontal แต่จะวางตัวในแนวเฉียง และอาจจะชรุขระไม่สม่ำเสมอหรือสมมาตรกัน อย่างไรก็ตาม neural tissue จะอยู่ทางด้าน ventral ต่อเส้นแบ่งเขตระหว่างเนื้องอกกับไขสันหลัง (fusion line) เสมอ

ดังนั้น lipoma จะไม่มีความยุ่งเกี่ยวกับ nerve root หรือทางเข้าของ dorsal nerve root เลย และสำหรับ defect ของ dura อาจกว้างไปจนถึงปลายสุดของ conus

3. Terminal lipoma

ต่างจาก dorsal และ transitional types สำหรับ terminal lipomas จะเกาะอยู่ที่ส่วนปลายของ conus และจะไม่ไปยุ่งเกี่ยวกับไขสันหลังทางด้าน dorsal หรือรากเส้นประสาทไขสันหลัง โดย sacral nerve root ที่ออกจาก conus เหนือต่อเนื้องอกไขมัน และ dura มักจะปกติ ตัว lipoma อาจจะแทนที่ filum ทั้งหมดหรือเกาะอยู่เป็นส่วนหนึ่งของ filum ก็ได้

4. Chaotic lipoma

Lipoma ชนิดนี้ลักษณะทางกายวิภาคหรือทางคัพกะวิทยาจะต่างจากเนื้องอกไขมันชนิดอื่นอย่างชัดเจน โดยส่วนด้านหัว (rostral) ของ lipoma อาจคล้ายกับ dorsal และ transitional lipoma แต่ส่วนปลายของเนื้องอกจะรุกล้ำไปทางด้าน ventral ของ neural placode และจะกลืนกิน neural tissue หรือ nerve root ดังนั้นอาจเห็น fusion line ได้แค่เฉพาะส่วน rostral ของเนื้องอก แต่ส่วนปลายจะไม่สามารถแบ่งเนื้องอกออกจากเนื้อเยื่อทางระบบประสาทได้อย่างชัดเจน ทำให้การผ่าตัด spinal lipoma ชนิดนี้ทำได้ค่อนข้างยากกว่าชนิดอื่น โดย chaotic lipoma นี้เป็นชนิดของ lipoma ที่พบได้ไม่บ่อยนัก แต่ก็จะพบว่ามีความสัมพันธ์กับภาวะ sacral agenesis

Long-term Outcomes and Complications of Multilevel ACDF, Compared with Single-level ACDF, A Retrospective Study

Anusorn Kuruvanich, M.D.

Ekkapot Jitpun, M.D.

Teera Tangviriyapaiboon, M.D.

Division of Neurosurgery, Neurological Institute of Thailand,

Department of Medical Service, Ministry of Public Health, Bangkok, Thailand

Abstract

Objective: To compare the clinical outcomes, radiological parameters, and complication incidence of patients who underwent anterior cervical discectomy and fusion (ACDF) to prove our hypothesis that multilevel ACDF did not have higher rate of complication than single level or 2-level ACDF.

Methods: We conducted a retrospective review of 82 consecutive patients who underwent ACDF for treatment of cervical spondylosis at Neurological Institute of Thailand in 10 years (2006 – 2015) by single surgeon. Patients were divided into 3 group (1-level, 2-level and 3 or 4 level ACDF). The clinical courses, fusion rate, postoperative complications, and radiographical adjacent-level changes regarding each group were evaluated.

Results: There is no statistical difference in restoration of cervical lordosis, and incidence of post-operative early and late complications between 1-level ACDF, 2-level ACDF and 3 or 4-level ACDF groups ($P > 0.05$). The 3 or 4-level ACDF group had more bleeding ($P = 0.000$) and longer length of stay in hospital ($p = 0.002$), with no clinically significant. Subgroup analysis of 3-level ACDF and 4-level ACDF had no statistical differences in all categories.

Conclusion: This study showed that result of multilevel ACDF was not different from 1 or 2-level ACDF in all outcome parameters. Compared to previous systematic review of posterior approach, this study does not show different results and complications. Multilevel ACDF had no higher risk of surgery in comparison to 1 or 2-level ACDF.

Key words: ACDF, multilevel ACDF, single-level ACDF, anterior cervical discectomy and fusion, Long-term outcomes, complications

Received: September 6, 2025 | Revised: September 20, 2025 | Accepted: September 30, 2025

*Corresponding author: Teera Tangviriyapaiboon, MD.

Division of Neurosurgery, Neurological Institute of Thailand

312, Ratchawithi Road, Thung Phaya Thai, Ratchathewi, Bangkok, Thailand, 10400

Email: Tangviriyapaiboon.t@nit.go.th

Introduction

Cervical spondylotic myelopathy (CSM) and radiculopathy are common causes of neurological dysfunction. These conditions are frequently presented in adult and old age groups. The onset of CSM is typically remarked by fine motor dysfunction and decreased hand dexterity, as well as worsening gait and balance.^{1,2}

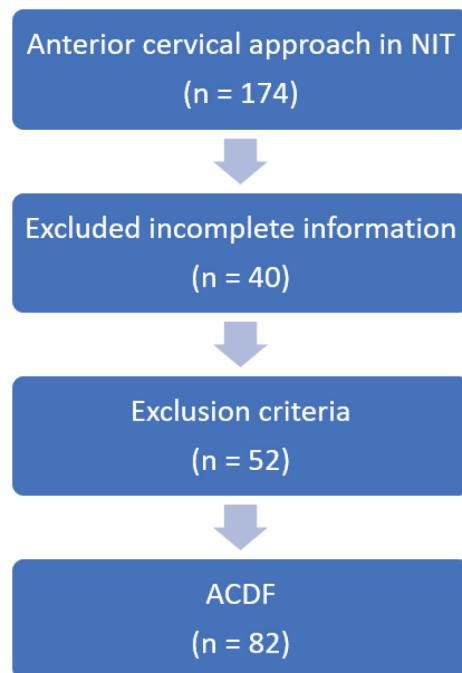
First introduced by Smith, Robinson, and Cloward in 1958³, anterior cervical discectomy and fusion (ACDF) is currently one of the most commonly performed procedure in the cervical spine. Usually, it is reserved for patients with myelopathy and/or intractable radiculopathy secondary to age-related degeneration.⁴

Anterior cervical fusion is shown to be a successful and often preferred treatment option in the surgical management of cervical radiculopathy and CSM.⁵ ACDF most commonly addresses single- or two-level disease. Three-level and four-level ACDF, however, are less common and there are limited data regarding their clinical outcomes, particularly for 4-level ACDF.⁴

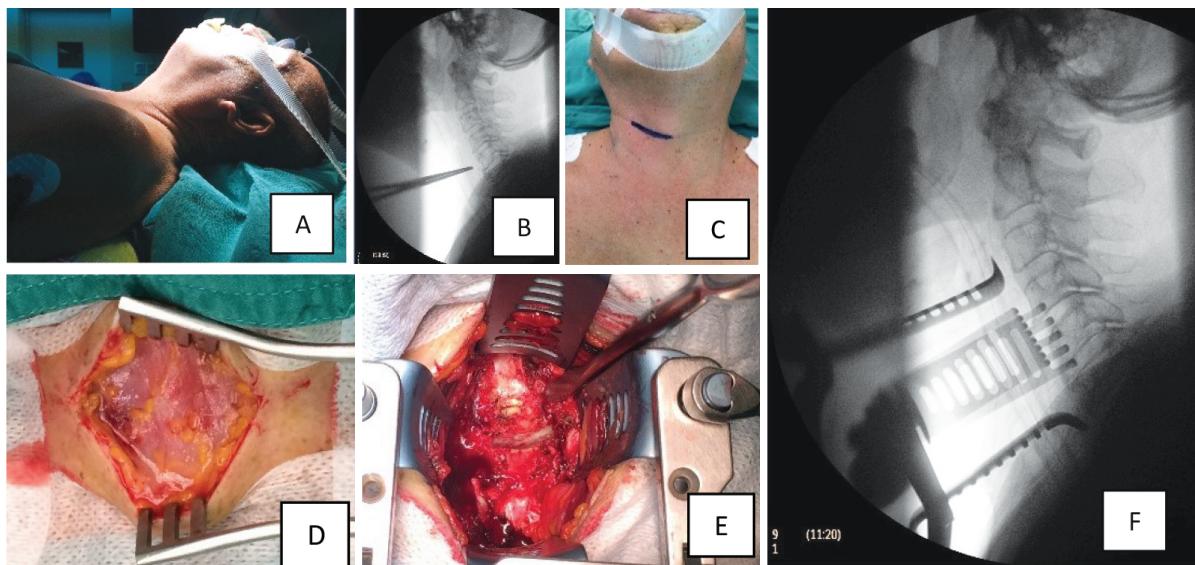
There is a concern about high rates of complications and pseudarthrosis with multilevel ACDF.⁶ The purpose of this study is to compare surgical complications, short-term and long-term outcomes of patients with cervical spondylosis or herniated nucleus pulposus both single and multilevel who underwent ACDF at Neurological Institute of Thailand in 10 years (2006 – 2015).

Methods

Following institutional review board approval,


a retrospective review of clinical and operative notes was performed to identify all neurosurgical patients who underwent an ACDF at a Neurological Institute of Thailand (NIT) by a single surgeon (T. Tangviriyaiboon) between 2006 and 2015.

The patients older than 18 years underwent ACDF for treatment of cervical spondylosis were enrolled. Patients with a history of previous cervical spine surgery ($n = 9$), less than 6 months of follow-up ($n = 5$), patients underwent ACDF following trauma, tumor resection, or primary spinal infections as well as patients who experienced combined (anterior/posterior) approaches, were excluded from this study. Patient with incomplete document or imaging were also precluded. ($n = 40$) (Figure 1)


Patient data including age, sex, comorbidities, presenting symptoms and degree of neck pain measured by visual analog scale (VAS) pain score were collected from clinical notes. The intraoperative data, including discectomy levels, type of bone graft, and estimated blood loss, were gathered from the operative notes.

Outcomes consisted of perioperative complications, need for surgical revision due to pseudarthrosis or adjacent segment disease (ASD), symptoms and last follow up pain score were evaluated. Outcome variables were obtained from clinical documents at the last available follow-up.

No funds were received in support of this work. No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this research.

Figure 1 Patient selection flowchart showing the final cohort of 82 patients who underwent ACDF.

Figure 2 Intraoperative view of 3-level ACDF

Operative technique

Patient was placed in supine position. Neck was hyperextended and shoulder was gently distracted down if lower cervical level was affected (Figure 2A). Skin incision was marked under fluoroscopic

guidance (Figure 2B). We preferred to operate on the right of the neck in all patients (Figure 2C). Skin incision is usually performed in transverse cervical fashion, except in patient who had multilevel disease or high vertebral height; incision was done

by longitudinal incision parallel to medial side of sternocleidomastoid muscle (SCM). Subcutaneous fat was undermined in all direction and bleeding was carefully checked. Platysma was opened in transverse fashion at midline to medial head of SCM (Figure 2D). Avascular plane was identified and dissected with Metzenbaum's scissor until prevertebral fascia was identified. Prevertebral fascia was sharply opened. Longus colli was dissected laterally to expose lateral cervical uncovertebral joint bilaterally. Cervical self-retracting retractors were applied (Figure 2E), then fluoroscope was used to identify level of surgery (Figure 2F). Discectomy was done under microscope until both uncovertebral

joints was seen and dura was freely identified level by level (Figure 3G). In term of fusion, either iliac bone graft or PEEK (Polyetheretherketone) was used (Figure 3H). Anterior plate fixation was performed in all cases with more than 2 level ACDF, but in 1 or 2 level ACDF, stand-alone PEEK maybe used in patients who not required reduction. After plate-screw system was placed, fluoroscope was used for instrumental adjustment (Figure 3I-J). Bleeding was checked and stopped. Vacuum drain was not inserted in all cases. Platysma and subcutaneous tissue were sutured with Vicryl 3-0. Skin was closed by subcuticular stitches and sterile strip was placed.

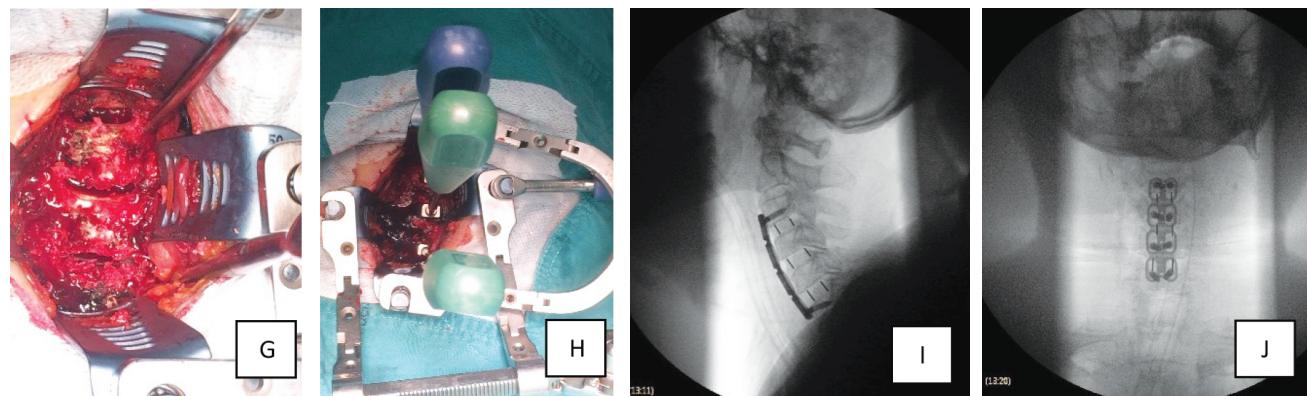


Figure 3 Intra operative view of 3-level ACDF (cont.)

Table 1 Demographic data

Data	1-level: N = 35	2-level: N=27	> 2-level: N=20	p Value
Age (Median)	54 (26-75)	53 (35-75)	56 (40-76)	0.286
Sex				
Male (%)	19 (54.3)	9 (33.3)	6 (30.0)	0.123
Underlying disease (%)				
DM	6 (17.1)	5 (18.5)	5 (25.0)	0.769
HT	15 (42.9)	8 (29.6)	14 (70.)	0.021
AF	0 (0)	1 (3.7)	1 (5.0)	0.326
Asthma	2 (5.7)	2 (7.4)	3 (15.0)	0.530
Anxiety	1 (2.9)	1 (3.7)	0 (0)	1.000
Old CVA	1 (2.9)	1 (3.7)	2 (10.0)	0.556
Other	11 (31.4)	4 (14.8)	8 (40.0)	0.138
Level				
C2-3 (%)	0	0	0	
C3-4 (%)	11.40	18.50	60.00	0.000
C4-5 (%)	2.90	55.60	100	0.000
C5-6 (%)	57.10	81.50	100	0.001
C6-7 (%)	28.60	44.40	70	0.012
C7-T1 (%)	0	0	0	
Current Smoking (%)	5 (14.3)	3 (11.1)	2 (10.0)	0.738
Drug Abuse (%)	0	0	0	
Current Alcohol user (%)	5 (14.3)	5 (18.5)	2 (10.0)	0.791
Main clinical (%)				0.193
Myelopathy	15 (42.9)	17 (63)	14 (70)	
Radiculopathy	19 (54.3)	9 (33.3)	6 (30)	
Neck pain	1/2.9%	1 (3.7)	0 (0)	
Follow up time (years) (Median)	4 (2-6)	3 (1-5)	3 (1-5)	0.635

DM = Diabetes mellitus type II

HT = Hypertension

AF = Atrial fibrillation

CVA = Cerebrovascular accident

Statistical Analysis

Patient variables are presented as the median where applicable. Binary outcomes were compared using chi-square tests while continuous variables were compared using Fisher's exact test and paired samples test. Statistical analyses were performed using Microsoft access and SPSS. A *p* value < 0.05 was defined as statistically significant.

Results

Demographics

A total of 174 ACDF were performed in our institution during 2006-2015. Eighty-two cases met our inclusion and exclusion criteria, with 35 cases underwent single level ACDF, 27 cases underwent 2-level ACDF and 20 cases underwent more than

2-level ACDF (Figure 1). There is no difference in patient's demographic data, except hypertension that was found to be a significant comorbid in > 2-level ACDF group compared with other groups. Cervical myelopathy was the main presenting symptom in multilevel ACDF patients, while radiculopathy was the major presenting symptom in single level group, but there was no statistical difference among these groups.

This study found that C5-6 (100% in > 2-level, 81.5% in 2-level, 57.1% in 1-level) was the most affected segment followed by C4-5, C6-7 and C3-4 in orderly (Table 1). A significantly higher proportion of patient in > 2-level group (100%, 70%, 60%) required surgery at C4-5, C6-7 and C3-4 respectively. Neither C 2-3 nor C7-T1 segment was involved in any group.

Comparison of Perioperative outcomes

In the study, the bony fusion was usually performed using PEEK (Polyetheretherketone) with or without anterior plate fixation. Autologous bone grafts harvested from anterior iliac crest were used as much as 22.9%, 33.3% and 45% in 1-level, 2-level and >2-level group, respectively. Operative time was increased according to increased number of operative levels (Table 2). Blood loss was increased significantly in > 2-level ACDF but any of patient in all groups have an anemic symptom or need for blood transfusion. Length of stay in > 2-level ACDF group (5.5 days) was longer than other groups (4 days). Delta Cobb angle in all group was not significantly changed.

Table 2 Operative data

Group	1-level	2-level	> 2-level	p Value
Graft				
Autologous bone (%)	8 (22.9)	9 (33.3)	9 (45.0)	0.231
Operative time (Minute)*	120 (70-240)	165 (100-300)	226 (151-325)	0.000
EBL (ml)*	20 (5-150)	40 (10-160)	125 (30-700)	0.000
LOS (day)*	4 (2-16)	4 (2-19)	5.5 (4-26)	0.002
Delta Cobb angle (degree)*	-3.37	-4.148	-2.65	0.646

* = Median

Delta Cobb angle = Immediate post-operative Cobb angle – Pre-operative Cobb angle

Early Complications

There is no patient in our study had neurological decline, surgical revision, or deep venous thrombosis (Table 3). Dysphagia was the most frequent complication in all groups (25.7%, 33.3%, 40% respectively), but no statistically significant among

them. Dysphonia was detected mostly in single level group (17.1%) but there was no statistical significance comparing with other groups. One patient in single level ACDF group was re-admitted due to urinary tract infection and was treated with antibiotics for 1 week. Wound complication was

found in 3 patients, all of them were a superficial wound dehiscence and were treated with wound dressing until primary closure as out-patient cases.

In term of post-operative pain, when patient

was fully conscious, was evaluated and recorded in VAS score. In all groups, there was no difference in post-operative pain at early period and before patients were discharged from hospital.

Table 3 Early post-Operative complications

Group	1-level	2-level	> 2-level	p Value
Dysphagia (%)	9 (25.7)	9 (33.3)	8 (40.0)	0.536
Dysphonia (%)	6 (17.1)	4 (14.8)	2 (10.0)	0.922
Wound complication (%)	2 (5.7)	0 (0.0)	1 (5.0)	0.466
Neurological decline	0	0	0	
Revision	0	0	0	
Readmission (%)	1 (2.9)	0	0	1.000
DVT	0	0	0	
VAS immediate	4 (1-8)	4 (2-8)	4.5 (2-8)	0.862
VAS at DC date	2 (1-2)	2 (0-5)	2 (0-4)	0.169

DVT = Deep vein thrombosis

VAS = Visual analog scale

Table 4 Late postoperative complications

Group	1-level	2-level	> 2-level	p Value
Dysphagia	0	0	0	
Dysphonia (%)	2 (5.7)	1 (3.7)	0 (0)	0.787
Pseudarthrosis (%)	1 (2.9)	1 (3.7)	0 (0)	1.000
Instrument failure	0	0	0	
Adjacent level	4 (11.4)	2 (7.4)	2 (10.0)	0.898
VAS Neck pain	1 (0-5)	1 (0-3)	1 (0-3)	0.489
VAS Radicular pain	1 (0-4)	0 (0-5)	0 (0-3)	0.155
Delta cobb angle	-5.371	-1.815	4.45	0.131

Delta Cobb angle = Last follow up Cobb angle – Pre-operative Cobb angle

Late Complications

The median follow-up time was 4 years in single level group, 3 years in 2-level group and 3 years in > 2 group, respectively (p -value = 0.635) (Table 1). There was no long-term complications of dysphagia or instrumental failure. Prolonged dysphonia was found in 3 patients, 2 in single level ACDF group and 1 in 2-level ACDF group (Table 4). Pseudarthrosis was seen 1 in single level group and 1 in 2-level group. Adjacent segment disease was found in all groups; 4,2 and 2 patients in each group, respectively, without statistical significance (p = 0.898), Extended ACDF procedures were performed in 2 patients with adjacent segment disease in single level group at 2 years after first surgery and 1 patient in 2-level group at 3 years after first surgery. The others were improved by conservative management.

There was no statistical significance in both long-term post-operative axial neck pain and radicular pain among 3 groups. Nearly all patients reported no pain (VAS = 0) or minimal intermittent pain (VAS = 1). Postoperative follow-up dynamic imaging was performed in all cases. The cobb angle of latest follow-up imaging was compared with immediate postoperative imaging. Progressive kyphosis was found in group of > 2-level ACDF (4.45 degree in 3 year follow up) more than other group, but without statistical significance (p = 0.131).

Subgroup Analysis

In subgroup analysis of > 2 level ACDF group, 14 patients underwent 3-level ACDF and 6 patients in 4-level ACDF. In term of complications of surgery, both early and late complications in all categories were not significantly different. (Table 5)

Table 5 Early and Late post-Operative complications in 3-level and 4-level ACDF

Group	3-level (14)	4-level (6)	p -Value
Early complications			
Dysphagia (%)	4 (28.6)	4 (66.7)	0.161
Dysphonia (%)	2 (14.3)	0 (0)	1.000
Wound complication (%)	1 (7.1)	0 (0)	1.000
Neurological decline	0	0	
Revision	0	0	
Readmission	0	0	
DVT	0	0	
VAS immediate	4 (2-8)	5 (2-8)	0.673
VAS at DC date	2 (1-3)	2 (1-3)	0.760
Late complications			
Late Dysphagia	0	0	
Late Dysphonia	0	0	
Pseudarthrosis	0	0	
Instrument failure	0	0	
Adjacent level (%)	2 (14.3)	0 (0)	1.000
Late VAS Neck pain	1 (0-3)	1.5 (0-2)	0.794
Late VAS Radicular pain	0 (0-3)	0 (0-3)	0.507

Discussion

ACDF is a common procedure in neurosurgery and is the gold standard treatment for single level cervical HNP, but in multilevel disease, it has controversy whether anterior or posterior approach has better result and less complications. At Neurological Institute of Thailand, ACDF is the procedure of choice in multilevel HNP with both myelopathy and radiculopathy. This research is retrospective study of patients underwent ACDF and followed up by our senior author (T. Tangviriyapaiboon), during 2006 - 2015.

This study was focus on both early and late post-operative complications between single level ACDF, 2-level ACDF and > 2-level ACDF groups. To the best of our knowledge, this study is the very first article in Thailand that focus on clinical result among these groups of patients.

There was no statistically significant difference in demographic data among 3 groups except underlying hypertension, which was higher in > 2-level ACDF. C5-6 disc was the most affected level in all groups, followed by C6-7, C4-5 and C3-4 level respectively.

Intraoperative blood loss and operative time were significantly increased correlated with number of operative levels. However, the clinical was similar in the aspect of blood transfusion and anemic symptom after surgery. Length of hospital stay was extended in multilevel ACDF for additional 1.5 day compared with single level or 2-level ACDF.

All groups have no difference in early and late complications, implied that number of levels was not associated with early or late complications in this study (Dysphagia, Dysphonia, Pseudarthrosis and adjacent level spondylosis). Instrument failure and re-operation were not seen in all groups.

In Yang Liu's⁷ study of surgical management of multilevel CSM, dysphagia was presented in ACDF 11.6%, Anterior cervical corpectomy and fusion (ACCF) 10.3% and Anterior cervical corpectomy/discectomy and fusion (hybrid) 9.7%, which was significantly higher comparing with our study. Hoarseness was found in 4.3% in ACDF group of Yang Liu's study and 1.8 – 3.8% in Craig Kilburg's study⁸ compare with 0% of this study. In a systematic review of CSM published in 2013 by Lawrence et al¹, pseudarthrosis was higher in multilevel ACDF group than posterior approach (4-17%). However, pseudarthrosis was not seen in all groups in our study. In term of neurological decline, especially C5 palsy was not found in our study but commonly found in posterior approach (3.7%)⁹ (7.1 – 10.2%)¹.

In subgroup analysis of > 2-level ACDF showed that 3-level and 4-level ACDF was not difference in both results and complications.

Limitations of this retrospective study were incomplete patient information leading to small number of collected data and all surgical procedures performed by only one spine surgeon that has experience in this type of surgery more than 10 years.

Conclusion

Multilevel cervical spondylosis has variety in choice of treatment include ACDF, ACCF, hybrid and posterior approach. This study was shown that result of multilevel ACDF was not difference to 1 or 2 level ACDF in all outcome parameters. Compared with systematic review of posterior approach, this study was not difference to all results. Multilevel ACDF had no higher risk of surgery in terms of neurological complications and instrument failure, compared with 1 or 2-level ACDF.

References

1. Lawrence BD, Jacobs WB, Norvell DC, Hermsmeyer JT, Chapman JR, Brodke DS. Anterior versus posterior approach for treatment of cervical spondylotic myelopathy. *Spine (Phila Pa 1976)*. 2013;38(22 Suppl 1):S173-82.
2. Emery SE. Cervical spondylotic myelopathy: diagnosis and treatment. *J Am Acad Orthop Surg*. 2001;9(6):376-88.
3. Smith GW, Robinson RA. The treatment of certain cervical spine disorders by anterior removal of the intervertebral disc and interbody fusion. *J Bone Joint Surg Am*. 1958;40(3):607-24.
4. De la Garza-Ramos R, Xu R, Ramhmdani S, et al. Long-term clinical outcomes following 3- and 4-level anterior cervical discectomy and fusion. *J Neurosurg Spine*. 2016;24(6):885-91.
5. Chin KR, Eiszner JR, Adams SB. Less exposure surgery for multilevel anterior cervical fusion using 2 transverse incisions. *J Neurosurg Spine*. 2012;17(3):194-8.
6. Cunningham MR, Hershman S, Bendo JA. Systematic review of cohort studies comparing surgical treatments for cervical spondylotic myelopathy. *Spine (Phila Pa 1976)*. 2010;35(5):537-43.
7. Liu Y, Hou Y, Yang L, Chen H, Wang X, Wu X. Comparison of 3 reconstructive techniques in the surgical management of multilevel cervical spondylotic myelopathy. *Spine (Phila Pa 1976)*. 2012;37(23):E1450-8.
8. Kilburg C, Sullivan HG, Mathiason MA. Effect of approach side during anterior cervical discectomy and fusion on the incidence of recurrent laryngeal nerve injury. *J Neurosurg Spine*. 2006;4(4):273-7.
9. Furlan JC, Kalsi-Ryan S, Kailaya-Vasan A, Massicotte EM, Fehlings MG. Functional and clinical outcomes following surgical treatment in patients with cervical spondylotic myelopathy: a prospective study of 81 cases. *J Neurosurg Spine*. 2011;14(3):348-55.

Efficacy of a Rapid External Ventricular Drain (EVD) Weaning Protocol in Preventing EVD Associated Complications

Boonmanus Aeknipitpittaya¹, Todsapon Praphanuwat² Chanon Srihagulang²
Jirapong Vongsak², Tanat Vaniyapong², Wanarak Watcharasaksilp²
Thunya Norasethada², Chumpon Jetjumnong²

¹Neurosurgery Unit, Department of Surgery, Rayong Hospital, Rayong, Thailand.

²Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.

Abstract

Background: External ventricular drainage (EVD) is a temporary management in patients with acute obstructive hydrocephalus from various causes. However, prolonged EVD placement is associated with significant risk of EVD-associated complications. To mitigate these risks and expedite the weaning process, a rapid external ventricular drainage weaning protocol has been proposed as a potential solution. This research aims to evaluate the efficacy of such a weaning protocol in preventing EVD-associated complications and improving patient outcomes.

Methods: Between January 2020 and December 2023, a prospective cohort study was conducted in patients who underwent EVD placement. The rapid EVD weaning protocol was assigned in the cohort group. The rate of EVD-associated complications was compared to the historical control group.

Results: Sixty patients were divided into rapid or gradual EVD-weaning groups ($n = 30$ each). EVD-related infection and complications occurred in 3.3% vs 10%; $p=0.612$ and 23.3% and 40.0%; $p=0.258$ in the rapid and gradual groups, respectively. Secondary outcomes—VP shunt rate, hospital length of stay, ICU stay, and EVD duration—did not differ significantly between groups. Only EVD-weaning duration was shorter with rapid weaning (4.4 vs 7.61 days; $p=0.002$).

Conclusion: The results indicate that rapid EVD weaning may shorten the weaning process without adversely affecting clinical outcomes or increasing complication rates. Confirmation in larger, adequately powered studies with extended follow-up is needed to define its role in neurocritical care.

Keywords: External ventricular drainage; Hydrocephalus; Neurosurgical patients; Infection

Introduction

External ventricular drainage (EVD) is a standard intervention for the management of acute neurosurgical conditions, including obstructive hydrocephalus, aneurysmal subarachnoid hemorrhage (SAH), intraventricular hemorrhage (IVH) or traumatic brain injury (TBI). Although effective for intracranial pressure (ICP) control and cerebrospinal fluid (CSF) diversion, prolonged EVD placement increases the risk of complications—including EVD-related infection and EVD-related complications (CSF leakage, occlusion, displacement, and overdrainage)—which may extend hospitalization, escalate healthcare costs, and worsen clinical outcomes.¹

Following resolution of the primary indication for EVD placement, the catheter should be weaned and removed as early as feasible, as the risk of ventriculostomy-associated infection (meningitis/ventriculitis) and other complications increase with dwell time.^{2,3} To mitigate these risks and improve outcomes, rapid EVD-weaning protocols have been adopted to facilitate timely catheter removal, thereby reducing dwell time and associated complications.

This study aims to investigate the efficacy of a rapid EVD weaning protocol in reducing EVD-associated complications compared with standard (gradual) weaning. By comparing patient outcomes across protocols, thereby delineating the clinical utility of structured EVD weaning strategies.

Materials and Methods

Patient population

This prospective cohort study was conducted in the neurosurgical critical care unit of a tertiary referral hospital. The protocol was approved by the Research Ethics Committee of Chiang Mai

University Hospital (Study code: SUR-256408108). Adults (≥ 18 years) treated between January 2020 and December 2023 were included in the rapid EVD-weaning cohort if they met all of the following criteria: diagnosis of acute obstructive hydrocephalus; placement of an external ventricular drain (EVD); no history of prior brain surgery; and no clinical evidence of central nervous system infection. A matched historical control cohort managed with gradual EVD weaning was constructed by matching on age, diagnosis, and Glasgow Coma Scale score

Intervention

The rapid EVD-weaning protocol entailed immediate clamping with continuous ICP monitoring once the indication for EVD placement had resolved, as determined by senior neurosurgical staff. If ICP exceeded 20 mm Hg for more than 5 minutes, the EVD was opened at 10 cm above the external acoustic meatus (EAM) for 5 minutes or until 10 mL of CSF had drained, whichever occurred first. A maximum of three releases per day was permitted; if additional releases were required, continuous drainage at 10 cm above the EAM was maintained until the following day. The protocol was implemented as individualized 2- or 5-day plans. At completion, a head CT was obtained to exclude hydrocephalus.

In contrast, the gradual EVD-weaning protocol consisted of stepwise elevation of the drainage height in 5-cm increments to 20 cm above the EAM, followed by clamp trials with ICP monitoring to assess readiness for removal. Decisions to continue or discontinue the EVD were based on clinical judgment, with head CT obtained selectively to confirm suitability for removal. (Table 1)

Table 1 A comparison between the rapid and gradual EVD weaning protocol.

Rapid EVD weaning	Gradual EVD weaning
Immediate clamping of EVD	Progressive increase in drainage levels at 5 cm intervals until reaching a level 20 cm above the EAM.
If ICP \geq 20 mmHg for more than 5 minutes, the EVD is released for 5 minutes at a level 10 cm above the EAM or if drainage \geq 10 ml.	Clamping was initiated for ICP monitoring and decision regarding EVD discontinuation or VP shunt were relied upon clinical judgment and expert opinions.
If released exceeded 3 times/day, continuous releasing was carried out.	
Tailored to each patient, the rapid EVD weaning protocol encompassed 2 and 5-day plans, if the weaning failed, VP shunt was indicated.	

Data Collection and Statistical Analysis

General demographic characteristics, primary diagnoses, and outcomes—including EVD-related complication rates (which include CSF leakage, occlusion, displacement, and overdrainage), hospital and ICU length of stay, shunt placement rate, EVD dwell time, and EVD weaning duration—were collected. Medical records were systematically reviewed on an individual basis to ensure data accuracy and appropriate matching of demographic variables. Analyses were performed using Stata version 16, with statistical significance defined as two-sided $p < 0.05$. Baseline characteristics were summarized using descriptive statistics: categorical variables as counts (percentages) and continuous variables as mean \pm SD for normally distributed data or median (interquartile range) otherwise. Between-group differences were assessed using Student's t test or Wilcoxon rank-sum test for continuous variables and the chi-square test for categorical variables.

Results

Baseline characteristics

Sixty patients were enrolled, comprising 30 in the rapid EVD-weaning group and 30 matched controls. The groups were comparable at baseline, with no significant differences in age, sex, admission Glasgow coma score, or indication for EVD placement. (Table 2)

Outcomes

The primary outcome were the rates of EVD-related infection and EVD-related complications. EVD-related infection occurred in 1/30 patients (3.3%) in the rapid-weaning group and 3/30 (10.0%) in the gradual-weaning group; the difference was not statistically significant ($p = 0.612$). EVD-related complications occurred in 7/30 (23.3%) versus 12/30 (40.0%), respectively, also without a significant difference ($p = 0.258$).

Secondary outcomes included VP shunt placement, hospital and ICU length of stay, total EVD dwell time, and EVD weaning duration. Hospital

Table 2 Baseline characteristics of the patients in both group.

Parameters	Rapid EVD weaning	Gradual EVD	p-value
	Group	weaning group	
	(N=30)	(N=30)	
Age (years), Mean (\pm SD)	57.97 (15.97)	59.10 (15.08)	0.779
Sex, N(%)			
Male	10 (33.3)	12 (40.0)	0.789
Female	20 (66.7)	18 (60.0)	
GCS Admission Mean (\pm SD)	7.79 (2.67)	7.80 (2.77)	0.969
Indication for EVD placement, N(%)			
Ruptured intracranial aneurysm	12 (40.0)	13 (43.3)	0.885
Hemorrhagic stroke	4 (13.3)	5 (16.7)	
Brain tumor	14 (46.7)	12 (40.0)	

and ICU length of stay and EVD dwell time did not differ significantly between groups. EVD weaning duration was significantly shorter in the rapid-weaning group (4.40 vs 7.61 days; $p=0.002$). VP shunt rates were equal in both groups (23.3% vs 23.3%; $p=1.00$). (Table 3)

Discussion

An external ventricular drain (EVD) is a valuable intervention for neurosurgical patients with acute obstructive hydrocephalus arising from various etiologies, particularly brain tumors and hemorrhagic stroke (SAH or IVH). It is also indicated in traumatic brain injury patients who require intracranial pressure monitoring. However, prolonged EVD placement may result in adverse events, notably EVD-related infection and complications.^{4,5} Efforts to reduce these risks are highly valuable, particularly in resource-limited settings. In a study by Poblete et al., the EVD-related infection rate among patients with aneurysmal SAH was 7.3%, with an associated mortality rate of 19.8%.⁶ Holloway et al. demonstrated a positive association between

EVD dwell time and infection risk, which increased over the first 10 days, leading to recommendations for removing EVD catheters as soon as clinically feasible.⁷

There is no consensus on a standard EVD weaning protocol, and practice frequently depends on individual clinician preference. Several groups have proposed rapid weaning protocols with variable efficacy.⁸⁻¹² Although prior studies have explored rapid weaning, our protocol is uniquely tailored to local clinical practices and resource constraints, and provides a reproducible framework for low-resource settings. In our study, the EVD-related infection rate was lower in the rapid weaning group compared with the gradual weaning group (3.3% vs 10.0%; $p = 0.612$), although this difference was not statistically significant, the lower infection rate in the rapid weaning group may be due to reduced EVD exposure time. This finding is consistent with results from Rao et al., who reported infection rates of 1.3% versus 8.8% ($p = 0.315$) for rapid versus gradual weaning, respectively. Although the overall rate of EVD-related complications

Table 3 A comparison of outcomes between the rapid and gradual EVD weaning protocol.

	Rapid EVD weaning protocol (N=30)	Gradual EVD weaning protocol (N=30)	p-value
EVD-related infection, N(%)			0.612
Yes	1 (3.3)	3 (10.0)	
No	29 (96.7)	27 (90.0)	
EVD-related complication, N(%)			
Yes	7 (23.3)	12 (40.0)	0.258
No	23 (76.7)	18 (60.0)	
Length of hospital stay (day) (\pmSD)	21.34 (3.97)	25.86 (4.53)	0.188
ICU stay (day) (\pmSD)	16.50 (5.52)	15.30 (6.28)	0.718
Total EVD dwell time (day) (\pmSD)	12.45 (4.43)	12.36 (4.97)	0.899
EVD weaning duration (day) (\pmSD)	4.40 (2.26)	7.61(3.81)	0.002
Rate of VP shunt, N(%)	7 (23.3)	7 (23.3)	1.000

* p <0.05

did not differ significantly between the groups (23.3% vs 40.0%; $p = 0.258$), subgroup observation suggested higher frequencies of cerebrospinal fluid leakage and catheter occlusion in the gradual weaning group. These trends warrant further investigation.

Prior studies have reported that rapid weaning is associated with shorter hospital and ICU lengths of stay and reduced mean EVD dwell time. In our cohort, however, none of these outcomes differed significantly between groups. Consistent with previous study^{8,11} the EVD weaning interval was significantly shorter with rapid weaning (4.40 vs 7.61 days; $p = 0.002$). Some studies have also reported lower ventriculoperitoneal (VP) shunt placement rates with rapid weaning^{11,12}, whereas we observed no between-group difference. Taken together, these findings suggest that strict implementation of a rapid-weaning protocol may reduce

healthcare provider workload, minimize invasive monitoring, and lower healthcare costs without increasing the risk of clinical deterioration.

This study has several limitations. First, the relatively small sample size reduced the statistical power to detect between-group differences. Second, heterogeneity in the primary indications for EVD placement, peri- and postoperative care, and the criteria for obtaining pre-discontinuation CT imaging between the prospectively enrolled rapid-weaning cohort and the historical control group may have introduced bias. Finally, long-term follow-up to determine the incidence of late shunt dependence was not available. Therefore, larger, multicenter RCTs with blinded outcome assessment, standardized complication criteria, and cost-effectiveness analyses are warranted.

Conclusion

Our study found that rapid EVD weaning shortened the weaning period by more than 3 days without evidence of worse outcomes compared with gradual weaning and showed trends toward lower infection and complication rates. Larger studies with longer follow-up are needed to

confirm efficacy; evaluations of cost-effectiveness and healthcare provider satisfaction may further inform standardized EVD management guidelines.

Disclosure Statement

The author(s) have no competing interests to disclose.

References

- Gu C, Lind ANR, Haldrup M, Eschen JT, Eskildsen MH, Kjær A, et al. Outcomes and complications of external ventricular drainage in primary and secondary intraventricular hemorrhage: a descriptive observational study. *J Neurosurg*. 2025 June 1;142(6):1599–605. doi:10.3171/2024.8.JNS24915
- Huang TF, Su YK, Su IC, Yeh YK, Liu HW, Kan IH, et al. Risk, Predictive, and Preventive Factors for Noninfectious Ventriculitis and External Ventricular Drain Infection. *Neurocrit Care*. 2024 Aug;41(1):109–18. doi:10.1007/s12028-023-01925-9
- Khalaveh F, Fazel N, Mischkulnig M, Vossen MG, Reinprecht A, Dorfer C, et al. Risk Factors Promoting External Ventricular Drain Infections in Adult Neurosurgical Patients at the Intensive Care Unit—A Retrospective Study. *Front Neurol*. 2021 Nov 8;12:734156. doi:10.3389/fneur.2021.734156
- Fried HI, Nathan BR, Rowe AS, Zabramski JM, Andaluz N, Bhimraj A, et al. The Insertion and Management of External Ventricular Drains: An Evidence-Based Consensus Statement: A Statement for Healthcare Professionals from the Neurocritical Care Society. *Neurocrit Care*. 2016 Feb;24(1):61–81. doi:10.1007/s12028-015-0224-8
- Tavakoli S, Peitz G, Ares W, Hafeez S, Grandhi R. Complications of invasive intracranial pressure monitoring devices in neurocritical care. *Neurosurg Focus*. 2017 Nov;43(5):E6. doi:10.3171/2017.8.FOCUS17450
- Poblete R, Zheng L, Raghavan R, Cen S, Amar A, Sanossian N, et al. Trends in Ventriculostomy-Associated Infections and Mortality in Aneurysmal Subarachnoid Hemorrhage: Data From the Nationwide Inpatient Sample. *World Neurosurg*. 2017 Mar;99:599–604. doi:10.1016/j.wneu.2016.12.073
- Holloway KL, Barnes T, Choi S, Bullock R, Marshall LF, Eisenberg HM, et al. Ventriculostomy infections: the effect of monitoring duration and catheter exchange in 584 patients. *J Neurosurg*. 1996 Sept;85(3):419–24. doi:10.3171/jns.1996.85.3.0419
- Klopfenstein JD, Kim LJ, Feiz-Erfan I, Hott JS, Goslar P, Zabramski JM, et al. Comparison of rapid and gradual weaning from external ventricular drainage in patients with aneurysmal subarachnoid hemorrhage: a prospective randomized trial. *J Neurosurg*. 2004 Feb;100(2):225–9. doi:10.3171/jns.2004.100.2.0225
- Jabbarli R, Pierscianek D, RÖlz R, Reinhard M, Darkwah Oppong M, Scheiwe C, et al. Gradual External Ventricular Drainage Weaning Reduces

The Risk of Shunt Dependency After Aneurysmal Subarachnoid Hemorrhage: A Pooled Analysis. *Oper Neurosurg.* 2018 Nov 1;15(5):498–504. doi:10.1093/ons/opy009

10. Chung DY, Leslie-Mazwi TM, Patel AB, Rordorf GA. Management of External Ventricular Drains After Subarachnoid Hemorrhage: A Multi-Institutional Survey. *Neurocrit Care.* 2017 June; 26(3):356–61. doi:10.1007/s12028-016-0352-9

11. Rao SS, Chung DY, Wolcott Z, Sheriff F, Khawaja AM, Lee H, et al. Intermittent CSF drainage and rapid EVD weaning approach after subarachnoid hemorrhage: association with fewer VP shunts and shorter length of stay. *J Neurosurg.* 2020 May 1;132(5):1583–8. doi:10.3171/2019.1. JNS182702

12. Chung DY, Thompson BB, Kumar MA, Mahta A, Rao SS, Lai JH, et al. Association of External Ventricular Drain Wean Strategy with Shunt Placement and Length of Stay in Subarachnoid Hemorrhage: A Prospective Multicenter Study. *Neurocrit Care.* 2022 Apr;36(2):536–45. doi: 10.1007/s12028-021-01343-9

5-year recurrent rate and factors related recurrent spinal meningioma

Patipat Pirunrungruang, Luckchai Phonwijit

*Division of Neurosurgery, Department of Surgery,
Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand*

Abstract

Introduction

Spinal meningiomas are usually benign spinal cord tumors, representing about 25% of all spinal tumors. Treatment options include watchful waiting and surgery, which typically removes the tumor completely with a low recurrence risk. However, undetected recurrences can cause neurological issues, necessitating regular MRI scans. Previous studies showed a 7-9% recurrence rate at 5 years post-surgery, increasing to 20-25% after 10 years³. This study aims to find 5-year recurrence rate and related factors for recurrence.

Methods

The authors conducted a single-center retrospective descriptive study in patients with spinal meningiomas treated in Siriraj hospital from July 2006 to November 2024. Finding 5-year and overall recurrence rate of 66 spinal meningiomas and related factors for recurrence.

Results

5-year and overall recurrence rates were 10.6% and 24.2%, respectively. The factors mostly affected recurrence were younger age at diagnosis (esp. <45 years) and history of neurofibromatosis type 2 (NF2). Other factors included gender, volume, location of tumor, dural tail sign, histopathological diagnosis and intra-operative finding did not show statistically significance for tumor recurrence.

Conclusions

The study at Siriraj Hospital shows that surgical removal of spinal meningiomas is effective but has a significant risk of recurrence, especially in younger patients or those with NF2. Despite benign nature of disease, our findings emphasize the importance of careful surgery and long-term follow-up. High-risk groups may need early and more frequent investigation.

Keywords: Spinal meningioma, Recurrent meningioma, Recurrent rate, Recurrent factor, Spinal cord tumor

Received: September 19, 2025 | Revised: November 29, 2025 | Accepted: November 30, 2025

*Corresponding Author: Patipat Pirunrungruang

Email: redhawkhighest@gmail.com

Introduction

Spinal meningioma is type of spinal cord tumors which classified as slow-growing tumors, and most are non-invasive. The incidence rate of this type of tumor is low. In the United States, it is found in approximately 0.33 people per 100,000 individuals.¹ At Siriraj Hospital, there are 4-6 cases of this tumor per year. However, meningiomas are the most common type among spinal cord tumors, accounting for about 25% of all spinal cord tumors.² Symptoms found in patients include weakness or numbness in specific areas corresponding to the location of the tumor in the spinal cord.

There are several treatment options for spinal meningiomas, including observation in cases where there are few neurological symptoms, as well as surgery. Regarding surgical treatment, almost all cases can be completely removed, and the recurrence rate is low. However, recurrence of the tumor can lead to neurological dysfunction. In some cases where recurrence occurs early, no symptoms may be detected, requiring periodic MRI scans for monitoring. At Siriraj hospital, there was not protocol for routine image follow-up. Some cases were suspected recurrence by clinical presentation before imaging.

Over the years, several studies worldwide have been conducted on the recurrence rates of spinal meningiomas. The recurrence rate after 5 years post-surgery is around 7-9%, and the recurrence rate after 10 years is about 20-25%.³ However, no studies on recurrence rates have been conducted in Thailand. Therefore, the researchers are interested in studying the recurrence rate of this tumor type, using it as a reference for recurrence rates in the country and determining the appropriate treatments and follow-up intervals.

For this study, “Recurrence” means recurring of the tumor on the same dural base after surgery of total resection (at least Simpson 2 grading) which found by MRI after clinical presentation.

Materials and methods

Study design

The authors conducted a single-center retrospective descriptive study in patients with spinal meningiomas treated in Siriraj hospital from July 2006 to November 2024. Regarding ethical issue, this study was approved by Siriraj Institutional Review Board (SIRB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Certificate of Approval (COA) number Si 369/2024. The patient data in the study was kept confidential according to the Declaration of Helsinki.

Patient selection

This study included all patients with spinal meningiomas, treated by surgical procedures in Siriraj hospital with follow-up period for at least 5 years by magnetic resonance imaging (MRI). The tumor was diagnosed by histopathological examination. The patients who were not followed up for at least 5 years was excluded from the study.

All symptomatic recurrent patients were diagnosed by MRI and undergone surgery for treatment.

Data collection

The collected data were described as the follows

1. Demographic characteristics included gender, age, history of neurofibromatosis type 2 (NF2), and presenting symptoms.
2. Tumor characteristics included volume of tumor in milliliter (mL), site of tumor, extension of tumor, dural tail sign, pathological diagnosis and WHO grade of tumor.

3. Intra-operative information included surgical grade, dural excision and arachnoid invasion.

4. Post-surgical information included post-surgical status, recurrence status at 5 years after surgery, overall recurrence status, timing of recurrence and follow-up.

Statistical analysis

The study on spinal meningiomas focuses on the following aspects:

1. Recurrence rate at 5 years - This will be reported using the recurrence rate and 95% confidence interval (95%CI) to indicate the reliability of the data.

2. Factors Related to Tumor Recurrence - Analyzed using Univariate Analysis to identify any significant associations.

3. Qualitative Data Factors - Includes gender, NF2 status, symptoms, MRI characteristics of the tumor, tumor location, histopathological findings reported by pathologists, surgical grade, arachnoid invasion and dural excision. These will be analyzed using Chi-square test or Fisher's Exact test, and Kaplan-Meier method (for time to recurrence), with results presented as percentages.

4. Quantitative Data Factors - Includes age and tumor volume, analyzed using independent t-test or Mann Whitney-U Test based on the appropriate data distribution. Results will be reported as means (with standard deviation) for normally distributed data or medians (range) for non-normally distributed data.

Results

Patient characteristics

This study included 66 cases with female predominance (51 patients, 77.3%). The average age of the patient cohort was 50.32 years, and 20

patients (30.3%) had a history of neurofibromatosis type 2 (NF2). Common presenting symptoms included weakness (81.8%), paresthesia (86.4%), and pain (25.8%).

Analysis of patient characteristics in relation to 5-year recurrence revealed that age was a significant factor. The mean age of patients experiencing 5-year recurrence was 35 years, significantly lower than the 52.14 years observed in the non-recurrence group ($p = 0.014$). From ROC graph of age, about 45 ($p = 0.01$) is cut off age which give best sensitivity (0.857) and specificity (about 0.7).

Gender did not demonstrate a significant association with recurrence.

History of NF2 had significant effect to 5-year recurrence with rate of 25% compared with 4.3% in non-NF2 group ($p = 0.023$). Time to recurrence in NF2 group were found to be earlier than in non-NF2 group for both 5-year recurrence and overall recurrence

Finally, the presenting symptoms, including weakness, paresthesia, and pain, did not differ significantly between the recurrence and non-recurrence groups.

Tumor characteristics

First diagnostic tumor volume was estimated using the formula (AP diameter x coronal diameter x craniocaudal length/ 2) and expressed in milliliters. The mean volume was 1.69 mL. While 5-year recurrence group exhibited higher mean tumor volume of 3.17 mL compared to 1.51 mL in the non-recurrence group, this difference did not reach statistical significance ($p=0.212$).

Tumor location was categorized by spinal level (cervical, thoracic, or lumbar) and by quadrant within the spinal canal (dorsal, dorsolateral, lateral, ventral, or ventrolateral). Thoracic tumors were

most prevalent (65.2%), followed by cervical (30.3%) and lumbar (4.5%) tumors. Spinal level did not correlate with recurrence ($p = 0.423$). In the recurrence group, tumors were predominantly located in the dorsolateral region (42.9%), whereas in the non-recurrence group, they were more commonly found in the ventrolateral region (39%). Extension of tumor still did not affect recurrence ($p=0.384$).

The majority of tumors were classified as WHO grade 1 meningiomas (98.5%), with only one case of WHO grade 2, atypical meningioma. Among the WHO grade 1 tumors, subtypes included psammomatous (34.8%), meningothelial (15.2%), transitional (3%), and angiomatous (1.5%), while a significant proportion remained unclassified (43.9%). Pathological diagnosis did not influence 5-year recurrence status ($p = 0.099$), but there were more ratio of psammomatous type in recurrence group (71.4%) compared to non-recurrence group (30.5%).

Intra-operative information

Surgical grade was categorized as total, subtotal, or partial, based on operative notes. Total resection was achieved in the majority of cases (86.4%), with no statistically significant difference observed

between the recurrence and non-recurrence groups. Dural excision was performed in only a small number, 5 cases in non-recurrence group. No dural excision was performed in recurrence group, but procedure did not affect recurrence ($p = 0.414$). No arachnoid invasion was noted in recurrence group, but 9 in the non-recurrence group (15.3%), again showing no significant difference between the groups ($p = 0.58$).

Post-surgical information

This study observed a 5-year recurrence rate of 10.6% (7 out of 66 cases) and an overall recurrence rate of 24.2% (16 out of 66 cases). The mean time to 5-year and overall recurrence was 3.86 and 6.81 years, respectively. Furthermore, no significant differences were found between the groups regarding post-surgical improvement or worsening of symptoms.

Discussion

Our study of 66 cases in Siriraj hospital showed a 10.6% 5-year recurrence rate, with overall recurrence rate of 24.2%. Mean 5-year recurrence time is 3.86 years and overall recurrence time of 6.81 years in a mean follow-up time of 7.85 years (range 5–16 years) which revealed importance of long-

Table 1 Overall patient demographic data

		N = 66
Age (yr), mean \pm SD; range		50.32 \pm 17.63; 11-82
Gender, n (%)	Male	15 (22.7)
	Female	51 (77.3)
NF2 history, n (%)		20 (30.3)
Presentation, n (%)	Weakness	54 (81.8)
	Paresthesia	57 (86.4)
	Pain	17 (25.8)

Table 2 Tumor characteristic data

N = 66		
Volume (mL), mean		1.69
Gender, n (%)	Cervical	20 (30.3)
	Thoracic	43 (65.2)
	Lumbar	3 (4.5)
Extension level, n (%)	1	15 (22.7)
	2	43 (65.2)
	3	7 (10.6)
	4	1 (1.5)
Site of tumor, n (%)	Dorsal	7 (10.6)
	Dorsolateral	13 (10.7)
	Lateral	9 (13.6)
	Ventral	6 (9.1)
	Ventrolateral	24 (36.4)
Dural tail sign, n (%)		37 (56.1)
Histopathology, n (%)	Meningioma	29 (43.9)
	Psammomatous	23 (34.8)
	Meningothelial	10 (15.2)
	Transitional	2 (3)
	Angiomatous	1 (1.5)
	Atypical	1 (1.5)
WHO grading, n (%)	1	65 (98.5)
	2	1 (1.5)

Table 3 Intra-operative information

N = 66		
Surgical grading, n (%)	Total	57 (86.4)
	Subtotal	4 (6.1)
	Partial	2 (3.0)
Dural excision, n (%)	Yes	9 (13.6)
	No	54 (81.8)

Table 4 Post-operative information

N = 66		
Postsurgical status, n (%)	Improve	58 (87.9)
	Stable	4 (6.1)
	Worsening	2 (3.0)
Overall follow-up time (yr), mean \pm SD; range		7.85 \pm 2.80; 5-16
5-year recurrence, n (%)		7 (10.6)
Overall recurrence, n (%)		16 (24.2)
Time to 5-year recurrence (yr), mean \pm SD; range		3.86 \pm 1.07; 3-5
Time to overall recurrence (yr), mean \pm SD; range		6.81 \pm 3.53; 3-15

Table 5 5-year recurrence information

	Recurrence (n = 7)	Non-recurrence (n = 59)	p-value
Patient demographic data			
Age (yr), mean \pm SD	35.0 \pm 15.14	52.14 \pm 17.12	0.014
Age (yr), range	12 – 82	11 – 46	
Age \leq 45 yr	6 (85.7)	19 (32.2)	0.01
Age $>$ 45 yr	1 (14.3)	40 (67.8)	
Gender, n (%)			
	Male	1 (14.2)	14 (23.7)
	Female	6 (85.8)	45 (76.3)
NF2 history, n (%)			
	Yes	5 (71.4)	15 (25.4)
	No	2 (28.6)	44 (74.6)
Tumor characteristic data			
Volume (mL), mean \pm SD	3.17 \pm 3.12	1.51 \pm 0.88	0.212
Volume (mL), range	0.72 - 7.72	0.06 - 3.26	
Level, n (%)			
	Cervical	2 (28.6)	18 (30.5)
	Thoracic	4 (57.1)	39 (66.1)
	Lumbar	1 (14.3)	2 (3.4)
Extension level, n (%)			
	1	2 (28.6)	13 (22.0)
	2	5 (71.4)	38 (64.4)
	3	0 (0)	7 (11.9)
	4	0 (0)	1 (1.7)

Table 5 5-year recurrence information (Cont.)

		Recurrence (n =7)	Non-recurrence (n =59)	p-value
Site of tumor, n (%)	Dorsal	0 (0)	7 (11.9)	0.246
	Dorsolateral	3 (42.9)	10 (16.9)	
	Lateral	1 (14.3)	8 (13.6)	
	Ventral	0 (0)	6 (10.2)	
	Ventrolateral	1 (14.3)	23 (39.0)	
Dural tail sign, n (%)		4 (57.1)	33 (55.9)	1.00
WHO grading, n (%)	1	7 (100)	58 (98.3)	0.729
	2	0 (0)	1 (1.7)	
Histopathology, n (%)	Meningioma	1 (14.3)	28 (47.5)	0.099
	Psammomatous	5 (71.4)	18 (30.5)	
	Meningothelial	0 (0)	10 (16.9)	
	Transitional	1 (14.3)	1 (1.7)	
	Angiomatous	0 (0)	1 (1.7)	
	Atypical	0 (0)	1 (1.7)	
Intra-operative information				
Dural excision, n (%)	Yes	0 (0)	5 (8.5)	0.414
	No	7 (100)	52 (88.1)	
Plain of tumor, n (%)	Good	7 (100)	47 (79.7)	0.58
	Poor	0(0)	9(15.3)	
Consistency, n (%)	Hard	1 (14.2)	5 (8.5)	
	Firm	0 (0)	13 (22.0)	
	Soft	3 (42.9)	20 (33.9)	
Overall follow-up time (yr), mean \pm SD		9.56 \pm 3.65	7.30 \pm 2.25	0.004

Table 6 Correlation of NF2 and recurrence

	NF2	Non-NF2	p-value
Age (yr), mean \pm SD	33.05 \pm 15.12	57.83 \pm 12.75	<0.001
Time to 5-year recurrence (yr), mean \pm SD	3.4 \pm 0.89	5.0 \pm 0	0.016
Time to overall recurrence (yr), mean \pm SD	5.57 \pm 3.78	7.78 \pm 3.19	0.22

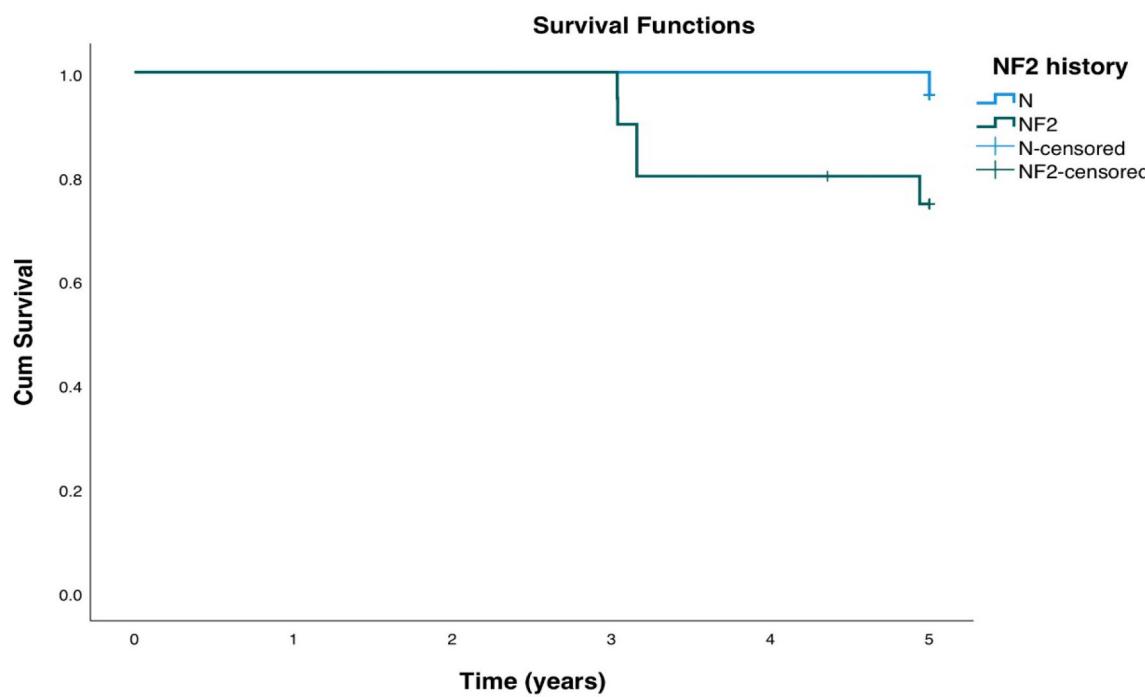


Figure 1 NF2 and recurrence-free graph

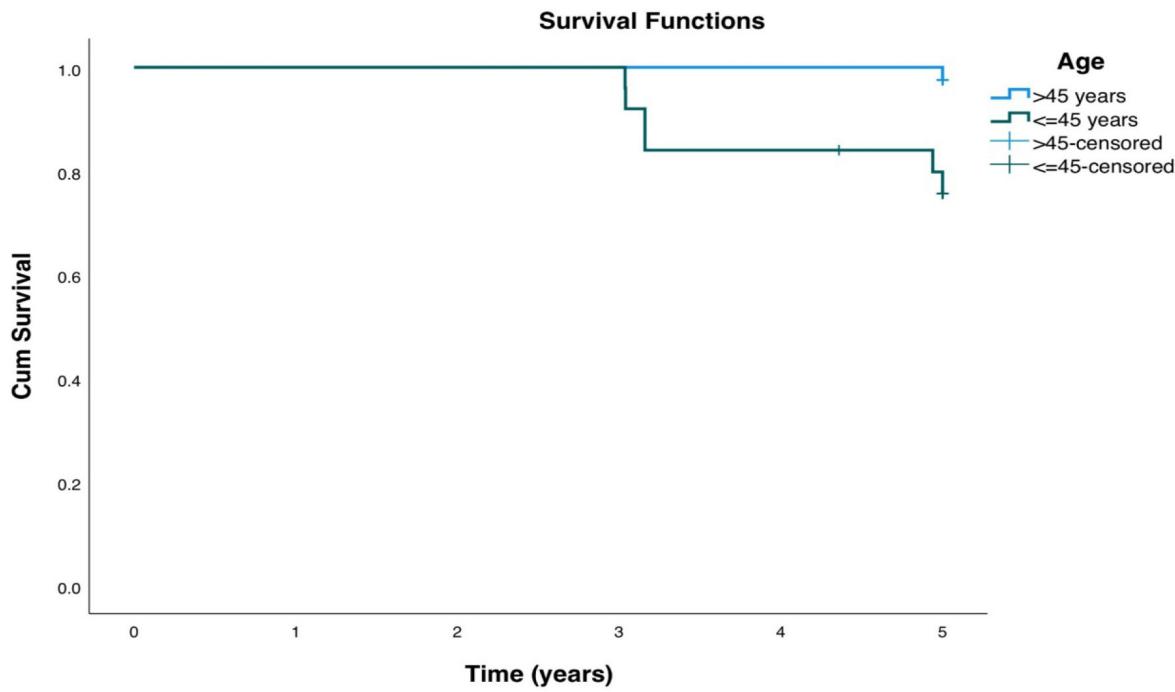
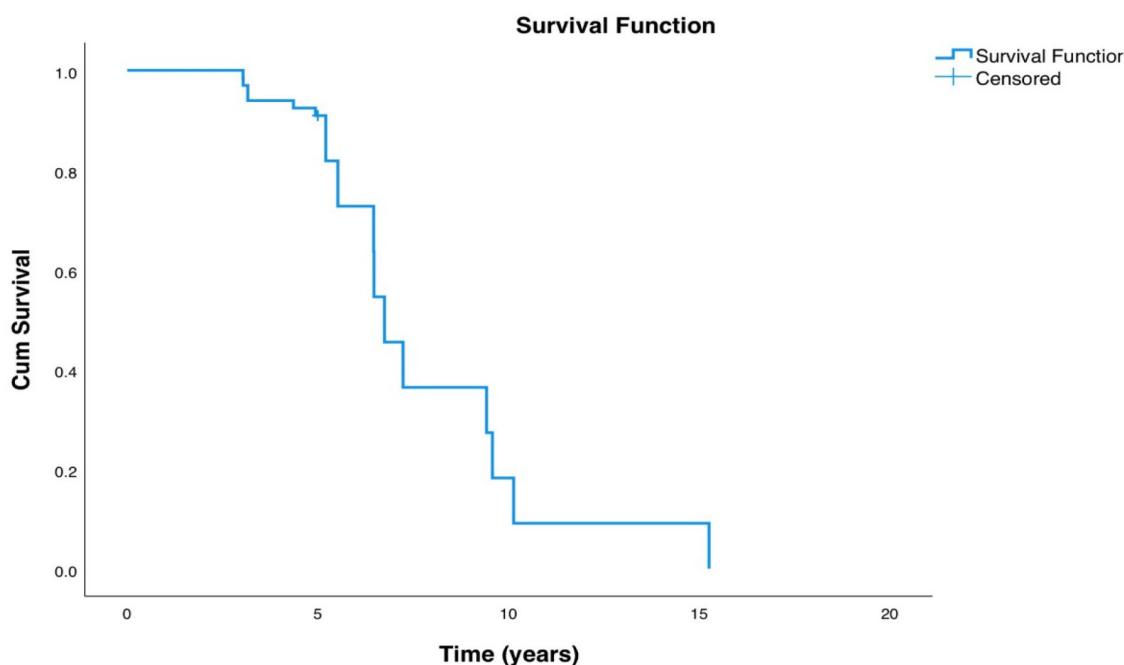



Figure 2 Age of 45 years and recurrence-free graph

Figure 3 Overall recurrence-free graph

term observation. Recurrences were significantly associated with younger age (≤ 45 years, $p=0.01$) and presence of neurofibromatosis type 2 (NF2, $p=0.023$), but not with sex, surgical grade, tumor location, dural tail sign, tumor extension, or histopathologic subtype. Most tumors were WHO grade I, with the exception of one atypical WHO grade II case, which did not recur. The grade I tumors primarily included psammomatous (34.8%) and meningothelial (15.2%) subtypes, with all recurrences occurring in this grade.

Recurrence Rates and the Importance of Long-Term Follow-Up

Our study reveals that while the 5-year recurrence rate for spinal meningiomas is about 10%, the rate increases to 24.2% with longer follow-up, highlighting the tumors' indolent yet persistent risk. Historically, recurrence rates reported for spinal meningiomas have varied widely, from around 1% to about 20%^{2,4-7}, depending on the

different factors. A recent systematic review by Kwee et al. reported recurrence rates ranging from 0% to 25% and suggested that studies with shorter follow-up likely underestimate the true recurrence risk.³ Our data supports this; our 5-year recurrence rate was 10.6%, but extended surveillance revealed a rate more than double. Notably, one patient experienced recurrence 15 years postoperatively, underscoring the potential for late recurrence. Mirimanoff et al. also observed a decrease in recurrence-free survival from 93% at 5 years to 68% at 15 years post-gross-total resection.⁷ Our data, which mostly included Simpson grade I-II resections, suggests that long-term follow-up is essential to monitor the recurrence.

Risk Factors for Recurrence

Age: In our study, younger patient age (≤ 45 years) was a significant predictor of recurrence, with these patients showing a higher recurrence likelihood ($p=0.01$). This aligns with global findings,

such as those by Cohen-Gadol et al., who reported that patients under 50 had a 22% recurrence rate, markedly higher than the 5% seen in older patients.⁸ Notably, our younger patients often had neurofibromatosis type 2 (NF2), factors that contribute to the increased recurrence risk. These observations suggest that younger age may serve as an indicator of genetic or anatomical predispositions that enhance recurrence risks. Clinically, this indicates that even “benign” spinal meningiomas in younger patients require careful and prolonged monitoring, particularly with underlying conditions like NF2.

NF2 Status: In our series, 30.3% of patients had NF2, significantly higher than the approximately 3% prevalence noted in general spinal meningioma studies.⁹ This high proportion likely reflects a referral bias due to Siriraj Hospital’s status as a tertiary care center. NF2 status was a significant predictor of recurrence ($p = 0.023$) in our study. NF2 is associated with a higher incidence of spinal meningiomas, which constitute about 14% of all spinal tumors in NF2 patients, and these tumors often exhibit a more aggressive behavior compared to sporadic cases.¹⁰ This aggressiveness is attributed to genetic alterations, including the loss of the merlin protein, which contributes to increased tumor growth and lesion multiplicity. Given these dynamics, NF2 patients require intensive and ongoing surveillance. Despite complete resections, they remain at elevated risk for the development of new tumors or recurrence at the original site, underscoring the need for vigilant follow-up in this population.

Extent of Resection (Simpson Grade): Complete microsurgical resection is fundamental in treating meningiomas. In intracranial cases, achieving a Simpson grade I or II resection correlates with the lowest recurrence rates. In spinal meningiomas,

the grading system is similarly applied but adapted: Simpson grade I involves excising the dural attachment, often necessitating a dural patch repair, while grade II involves coagulating the dural insertion without excision.

In our study, 86.4% of the spinal meningiomas were totally resected (Simpson I or II), with only 7 patients (10.6%) undergoing subtotal (Simpson III) or partial (Simpson IV) resections. We found no statistically significant difference in recurrence rates between Simpson grade I and others. While none of the 5 patients with a Simpson grade I resection experienced recurrence, the sample size might be too small to draw definitive conclusions. The majority, about 80%, underwent Simpson grade II resection, and experienced a modest recurrence rate.

Our findings align with recent studies, such as one by Kobayashi et al., which also reported no significant differences in recurrence between Simpson I and II resections over a mean follow-up of 7 years.¹¹ This suggests that aggressive dural resection (Simpson I) might not always be necessary, particularly if it poses additional risks like spinal cord manipulation or cerebrospinal fluid leakage.⁴ For spinal meningiomas, especially those located ventrally, attempting a Simpson I resection may increase these risks. The generally low recurrence rates observed with Simpson II in our study support a less aggressive approach when appropriate.

Tumor Location (Axial and Longitudinal): In our, the majority of spinal meningiomas were located in the thoracic region (65.2%), followed by the cervical (30.3%) and a few in the lumbar region (4.5%), reflecting the common preference for the thoracic spine.¹² The tumors were found in various axial positions, including dorsal, dorsolateral, lateral, ventral, and ventrolateral attachments.¹³ Our analysis

showed that neither the spinal level nor the axial position significantly influenced recurrence rates, suggesting that tumor location does not inherently determine recurrence risk, provided that gross-total resection is achieved.

However, the location does affect the ease of resection. Tumors located ventrally or ventrolaterally are often more challenging to remove completely due to the difficult surgical access to the dural attachment on the anterior side of the spinal cord. For example, Nakamura's study highlighted that all recurrences occurred in ventral tumors that only underwent a Simpson II resection, where the dura was coagulated but not excised.¹⁴ In our series, despite these challenges, our ventral tumors did not show a significant difference in recurrence rates compared to dorsal tumors, likely because the ventral dura was adequately coagulated and the cases were followed long-term.

For large ventral tumors, we sometimes used posterolateral approaches to improve access, following techniques described in recent surgical literature.¹⁵ Additionally, the extent of the tumor vertically (number of spinal levels affected) did not correlate with recurrence; tumors spanning multiple levels were either removed en bloc or in piecemeal but completely, with outcomes similar to those of single-level tumors. This comprehensive approach helped us achieve satisfactory resection rates across various tumor locations and sizes.

Sex: Spinal meningiomas are more common in females, with our study showing 77% female patients. Despite this, studies like Kobayashi et al. report higher recurrence rates in males, suggesting more aggressive tumor biology or links to

conditions like NF2 in this less commonly affected group.¹¹ Our data did not show significant sex differences in recurrence.

Dural Tail Sign: In our study, 56.1% of patients showed a dural tail on preoperative MRI, an indicator of significant dural involvement by the tumor. However, the presence of a dural tail did not statistically predict recurrence, likely because we consistently addressed the dural attachment zone through resection or coagulation in all cases. While a residual dural tail could potentially lead to recurrence if not completely coagulated, our thorough approach in treating these areas, regardless of resection type, may explain the lack of significant findings. This contrasts with other studies, such as the multicenter study that found a dural tail sign associated with higher recurrence risks¹¹, possibly due to less aggressive management in some centers. Our effective surgical techniques, including extensive cauterization of any dural tail, likely mitigated this risk, underscoring the importance of proper dural management in surgery.

Histopathology and Subtype Considerations: In our study, nearly all tumors were WHO grade I meningiomas, with only one atypical WHO II case (1.5%) that did not recur. High-grade spinal meningiomas are rare, and even high-risk tumors can remain controlled under certain conditions. Histologically, psammomatous meningioma was the most common subtype (34.8%), followed by meningothelial (15.2%). Although histologic subtype did not significantly correlate with recurrence ($p = 0.099$), higher incidence of the psammomatous type in the recurrence group (71.4% compared to 30.5%) may indicate tumor calcification. This calcification tends to give the tumors a firmer consistency and often results in them being broadly attached to the dura, which can complicate surgical resection.

Our findings emphasize the clinical relevance of histologic subtypes and WHO grade in spinal meningioma management. Subtype identification can influence surgical strategies and follow-up, especially in cases with unusual pathology. Overall, while WHO grade is a primary prognostic factor, understanding the nuances of each subtype within the context of other risk factors, like NF2 status, is crucial for tailored treatment and surveillance.

Clinical Implications

Maximal Safe Resection is Crucial: We reaffirm that gross-total resection (Simpson grade I or II) should be the surgical goal whenever feasible, as it offers the best chance for long-term tumor control. However, attempting Simpson grade I (dural resection) in every case is not always necessary if it would incur undue risk.

Long-Term Surveillance is Essential: Our data strongly indicates the necessity for long-term follow-up in spinal meningioma patients, with recurrences as late as 10–15 years post-surgery not being uncommon. This aligns with recommendations from some studies that advise lifelong surveillance after resection.¹¹ Practically, this entails periodic MRI screenings for patients—initially more frequently within the first five years post-surgery, then possibly annually or biennially, even if they remain asymptomatic. Given the relatively slow progression of these tumors, as evidenced by the mean overall recurrence time of about 6–7 years in our study, early detection of recurrence allows for timely re-operation with minimal risk and before any significant neurological decline. The fact that our observed 5-year recurrence rate (10.6%) more than doubles with extended follow-up highlights the insufficiency of short-term monitoring. Therefore, we recommend continued surveillance

for at least 10–15 years, or ideally for life, especially in younger patients or those with NF2 whose recurrence occurred earlier than the other group (3.4 yr vs 5.0 yr, $p = 0.016$).

Risk Factor-Tailored Management: Identifying patients at higher risk of recurrence is crucial for optimizing management strategies. In our cohort, younger patients, or those with NF2, are considered high-risk. These individuals may benefit from more aggressive initial surgical approaches, such as a Simpson I resection when feasible, given their longer potential duration for recurrence. Furthermore, such high-risk patients require closer and more consistent follow-up. Specifically, we recommend that these high-risk patients be clearly informed about their elevated recurrence risk to ensure they remain vigilant and engaged in long-term surveillance. For instance, in our practice, young patients with NF2 are scheduled for annual MRI scans indefinitely to monitor for any changes. Conversely, an elderly patient with a small, low-risk dorsal meningioma that has been completely resected might not require as frequent follow-up after an initial disease-free period. However, given that recurrences can occur even late in life, as seen with a patient at age 82 in our series, we still advise long-term imaging for most cases to ensure comprehensive care and early detection of any potential recurrence.

Conclusion

This study of spinal meningiomas at Siriraj hospital confirms that surgical treatment not only yields excellent outcomes in terms of symptom relief and initial tumor control, but also highlights the non-negligible risk of late recurrence. Younger age ≤ 45 years and NF2 are associated with higher recurrence risk, calling for meticulous resection

and prolonged observation in these patients. Histopathologic trends were noted (with psammomatous tumors being common in our cohort), though subtype alone did not significantly dictate recurrence. Even WHO grade I spinal meningiomas can recur a decade or more after resection, meaning that patients and clinicians must remain vigilant. Our series emphasized on long-term and frequent follow-up in spinal meningioma patients,

especially in high risk group. Future research may focus on molecular predictors of recurrence and optimal management strategies for high-risk patients (e.g. NF2-associated meningiomas). Until then, adherence to established surgical principles (complete resection when safe) and sustained long-term postoperative surveillance are the best tools for ensuring the lasting success of our interventions.

References

1. Kshettry VR, Hsieh JK, Ostrom QT, Kruchko CB, Benzel EC, Barnholtz-Sloan JS. Descriptive epidemiology of spinal meningiomas in the United States. *Spine*. 2015;40(12):886-9. doi:10.1097/BRS.0000000000000974
2. Solero CL, Fornari M, Giombini S, Lasio G, Oliveri G, Cimino C, et al. Spinal meningiomas: review of 174 operated cases. *Neurosurgery*. 1989; 25(2):153-60. doi:10.1227/00006123-198908000-00001
3. Kwee LE, Harhangi BS, Ponne GA, Kros JM, Dirven CMF. Spinal meningiomas: treatment outcome and long-term follow-up. *Clin Neurol Neurosurg*. 2020;198:106238. doi:10.1016/j.clineuro.2020.106238
4. Tsuda K, Akutsu H, Yamamoto T, Nakai K, Ishikawa E, Matsumura A. Is Simpson grade I removal necessary in all cases of spinal meningioma? Assessment of postoperative recurrence during long-term follow-up. *Neurol Med Chir (Tokyo)*. 2014;54(11):907-13. doi:10.2176/nmc.oa.2013-0311
5. Maiuri F, Di Divitiis O, Guadagno E, Mariniello G. Recurrence of spinal meningioma: analysis of the risk factors. *Br J Neurosurg*. 2020;34(5):569-74. doi:10.1080/02688697.2019.1638886
6. Wang ZL, Mou JH, Sun D, Liu P. Upper thoracic purely extradural spinal meningioma with nerve root attachment: a case report and literature review. *Front Surg*. 2022;9:918094. doi:10.3389/fsurg.2022.918094
7. Mirimanoff RO, Dosoretz DE, Linggood RM, Ojemann RG, Martuza RL. Meningioma: analysis of recurrence and progression following neurosurgical resection. *J Neurosurg*. 1985;62(1):18-24. doi:10.3171/jns.1985.62.1.0018
8. Cohen-Gadol AA, Zikel OM, Koch CA, Scheithauer BW, Krauss WE. Spinal meningiomas in patients younger than 50 years of age: a 21-year experience. *J Neurosurg*. 2003;98(3 Suppl): 258-63. doi:10.3171/suppl.2003.98.3.0258
9. Deska-Gauthier D, Hachem LD, Wang JZ, Landry AP, Yefet L, Gui C, et al. Clinical, molecular, and genetic features of spinal meningiomas. *Neurooncol Adv*. 2024;6(Suppl 3):iii73-82. doi:10.1093/noajnl/vdae123
10. Goutagny S, Kalamarides M. Meningiomas and neurofibromatosis. *J Neurooncol*. 2010; 99(3):341-7. doi:10.1007/s11060-010-0339-x
11. Kobayashi K, Ando K, Matsumoto T, Sato K, Kato F, Kanemura T, et al. Clinical features and prognostic factors in spinal meningioma surgery

from a multicenter study. *Sci Rep.* 2021;11(1): 11630.doi:10.1038/s41598-021-91225-z

12. Gottfried ON, Gluf W, Quinones-Hinojosa A, Kan P, Schmidt MH. Spinal meningiomas: surgical management and outcome. *Neurosurg Focus.* 2003;14(6):e2. doi:10.3171/foc.2003.14.6.2

13. Maiti TK, Bir SC, Patra DP, Kalakoti P, Guthikonda B, Nanda A. Spinal meningiomas: clinico-radiological factors predicting recurrence and functional outcome. *Neurosurg Focus.* 2016;41(2):E6. doi:10.3171/2016.5.FOCUS16163

14. Nakamura M, Tsuji O, Fujiyoshi K, Hosogane N, Watanabe K, Tsuji T, et al. Long-term surgical outcomes of spinal meningiomas. *Spine (Phila Pa 1976).* 2012;37(10):E617-23. doi:10.1097/BRS. 0b013e31824167f1

15. Arima H, Takami T, Yamagata T, Tanaka S, Tsuyuguchi N, Ohata K. Surgical management of spinal meningiomas: a retrospective case analysis based on preoperative surgical grade. *Surg Neurol Int.* 2014;5(Suppl 7):S333-8. doi:10. 4103/2152-7806.139642