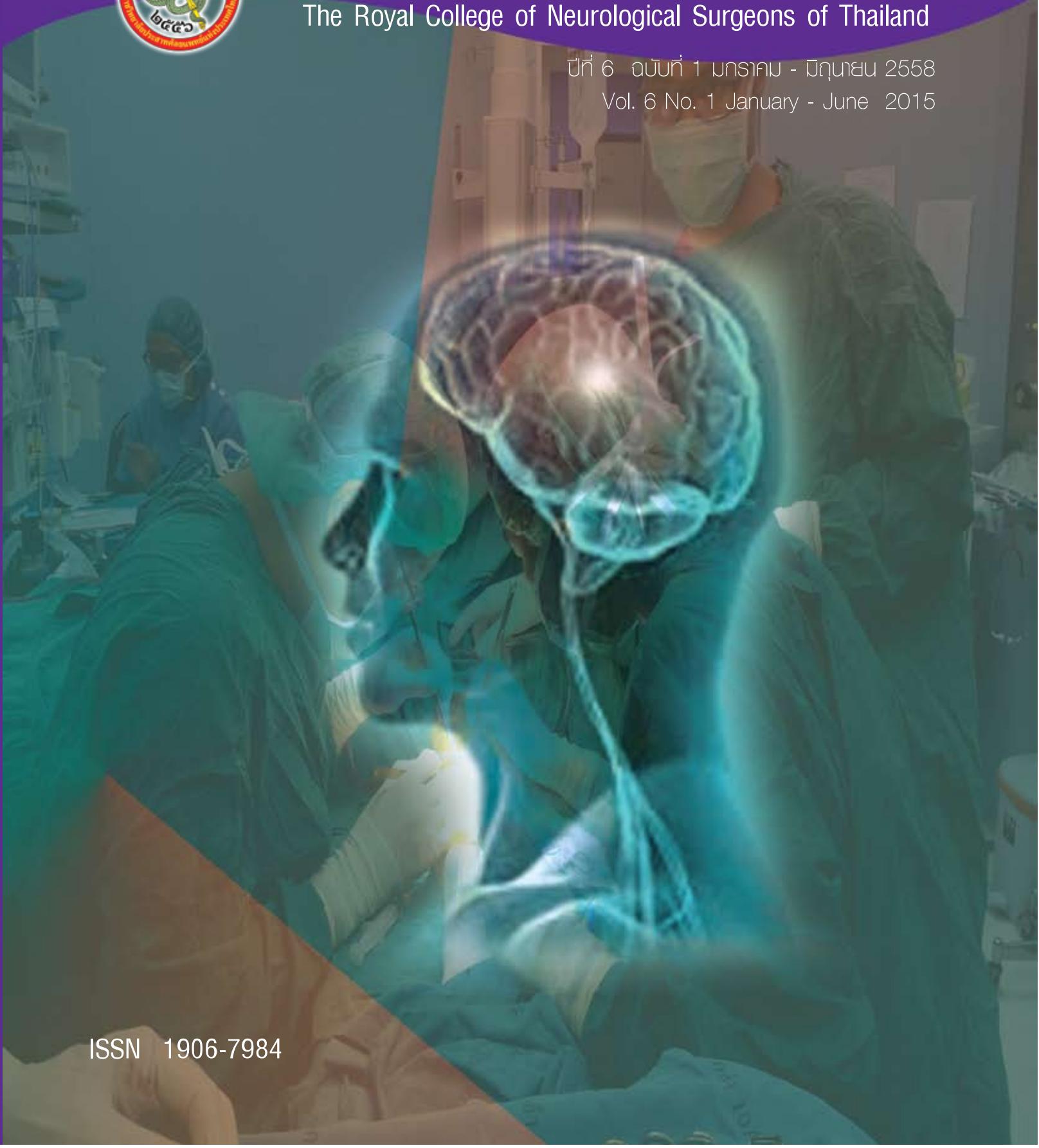


ຈາກສາດ

ประสาทศัลยศาสตร์


NEUROLOGICAL SURGERY

ราชวิถีวิทยาลัยประสาทศัลยแพทย์แห่งประเทศไทย

The Royal College of Neurological Surgeons of Thailand

ปีที่ 6 ฉบับที่ 1 มกราคม - มิถุนายน 2558

Vol. 6 No. 1 January - June 2015

ISSN 1906-7984

วารสารประจำเดือนศาสตร์
ปีที่ 6 ฉบับที่ 1 มกราคม – มิถุนายน 2558

Neurological Surgery
Vol. 6 No. 1 January – June 2015

เจ้าของ : ราชวิทยาลัยประสาทศัลยแพทย์แห่งประเทศไทย

สำนักงาน : อาคารเฉลิมพระบรมมี ๕๐ ปี
เลขที่ 2 ซอยศูนย์วิจัย ถนนเพชรบุรีตัดใหม่ แขวงบางกะปิ
เขตห้วยขวาง กรุงเทพฯ ๑๐๓๑๐
โทรศัพท์ ๐๒-๗๑๘๑๙๙๖ โทรสาร ๐๒-๗๑๘๑๙๙๗

บรรณาธิการ : รองศาสตราจารย์นายแพทย์ภัทรวิทย์ รักษ์กุล

พิมพ์ที่ : บริษัท สำนักพิมพ์กรุงเทพเวชสาร
3/3 สุขุมวิท 49 แขวงคลองตันเหนือ เขตวัฒนา
กรุงเทพฯ ๑๐๑๑๐
โทร. ๐๒-๒๕๘-๗๙๕๔, ๐๒-๖๖๒-๔๓๔๗ โทรสาร ๐๒-๒๕๘-๗๙๕๔

วารสารประจำเดือนทางการแพทย์
ปีที่ 6 ฉบับที่ 1 มกราคม – มิถุนายน 2558

Neurological Surgery
Vol. 6 No. 1 January – June 2015

คณะกรรมการบริหารราชวิทยาลัยประจำเดือนทางการแพทย์แห่งประเทศไทย

อดีตประธานวิทยาลัยฯ

นายแพทย์วัชญุณ ปรัชญานนท์
นายแพทย์ช่อเพิ่ง เตเชพาร
นายแพทย์ศุภโชค จิตรวนิช
นายแพทย์นครชัย เพื่อนปฐม

ประธานราชวิทยาลัยฯ

นายแพทย์ไชยวิทย์ ธนไพบูลย์
ผู้รับตำแหน่งประธานฯ

นายแพทย์สิรุจัน ศกุณณมารค

เลขานิการ

นายแพทย์รุ่งศักดิ์ ศิริวัฒน์

เหรัญญิก

นายแพทย์ยอดรัก ประเสริฐ

นายทะเบียน

นายแพทย์พีระ นาคลออ

ปฏิคม

นายแพทย์กุลพัฒน์ วีรสาร

กรรมการวิชาการ

นายแพทย์ศรัณย์ นันท�始ี

กรรมการวารสาร

นายแพทย์ภัทรวิทย์ รักษ์กุล

ผู้แทนกลุ่มฯ ประจำเดือนทางการแพทย์ใน ราชวิทยาลัยประจำเดือนทางการแพทย์แห่งประเทศไทย

นายแพทย์สิรุจัน ศกุณณมารค

กรรมการกลาง

นายแพทย์กฤษณพันธ์ บุณยารัตเวช

นายแพทย์เกรียงศักดิ์ ลิมพสถาน

นายแพทย์ประชา ชัยกัม

นายแพทย์ประดิษฐ์ ไชยบุตร

นายแพทย์ศักดิ์ชัย แซ่เง็ง

นายแพทย์เอก หังสูต

นายแพทย์อำนาจ กิจวรดี

Executive Committee 2015–2017

Past-President

Watanyoo Prachayanont, M.D.

Chopeow Taecholarn, M.D.

Supachoke Chitvanich, M.D.

Nakornchai Phuenpathom, M.D.

President

Chaiwit Thanapaisal, M.D.

President-elect

Siraruj Sakoolnamarka, M.D.

Secretary General

Rungsak Siwanuwath, M.D.

Treasurer

Yodruk Prasert, M.D.

Registrar

Peera Narkla-or, M.D.

Social Function

Kullapat Veerasarn, M.D.

Scientific Chairman

Sarun Nunta-Aree, M.D.

Editor of Journal

Pataravit Rukskul, M.D.

Representative Neurosurgeon in RCST

Siraruj Sakoolnamarka, M.D.

Board of Directors

Krishnapundha Bunyaratavej, M.D.

Kriengsak Limpastan, M.D.

Pracha Chayapum, M.D.

Pradit Chaiyabud, M.D.

Sakchai Saeheng, M.D.

Ake Hansasuta, M.D.

Amnat Kitkhuandee, M.D.

วารสารประจำเดือนศาสตร์
ปีที่ 6 ฉบับที่ 1 มกราคม – มิถุนายน 2558

Neurological Surgery
Vol. 6 No. 1 January – June 2015

กองบรรณาธิการวารสาร

นายแพทย์วัทัญญา ปรัชญาณนท์
นายแพทย์ช่อเพียง เต็ชพาร
นายแพทย์ศุภโชค จิตราภิช
นายแพทย์นครชัย เพื่อนปฐม
นายแพทย์ไชยวิทย์ อนไพบูล
นายแพทย์สิรรุจน์ ศกุลณัมมารค
นายแพทย์รุ่งศักดิ์ ศิรานุวัฒน์
นายแพทย์ยอดรัก ประเสริฐ
นายแพทย์พีระ นาคลออ
นายแพทย์กุลพัฒน์ วีรสาร
นายแพทย์ศรัณย์ นันทารี
นายแพทย์ภัทรવิทย์ รักษกุล
นายแพทย์กฤษณพันธ์ บุณยะรัตเวช
นายแพทย์เกรียงศักดิ์ ลิ่มพัสดาน
นายแพทย์ประชา ชัยภัม
นายแพทย์ประดิษฐ์ ไชยบุตร
นายแพทย์ศักดิ์ชัย แซ่เอ้ง
นายแพทย์เอก หังสูต
นายแพทย์อํานาจ กิจควรดี

Watanyoo Prachayanont
Chopeow Taecholarn
Supachoke Chitvanich
Nakornchai Phuenpathom
Chaiwit Thanapaisal
Siraruj Sakoolnamarka
Rungsak Siwanuwatn
Yodruk Prasert
Peera Narkla-or
Kullapat Veerasarn
Sarun Nunta-Aree
Pataravit Rukskul
Krishnapundha Bunyaratavej
Kriengsak Limpastan
Pracha Chayapum
Pradit Chaiyabud
Sakchai Saeheng
Ake Hansasuta
Amnat Kitkhuandee

คำแนะนำในการส่งบทความ (Information for Authors)

วารสารประจำศัลยศาสตร์ ใช้ชื่อภาษาอังกฤษว่า “Neurological Surgery” เป็นสื่อทางการของวิทยาลัย ประจำศัลยศาสตร์แห่งประเทศไทย พิมพ์เผยแพร่แก่สมาชิกของวิทยาลัยฯ กำหนดออกทุก 3 เดือน โดยมีวัตถุประสงค์ เพื่อ:

1. นำเสนอผลงานวิจัย ข้อเขียน บทความตลอดจนความคิดเห็นเชิงวิชาการทางประจำศัลยศาสตร์และ สาขาที่เกี่ยวข้อง
2. เป็นสื่อกลางใช้แลกเปลี่ยนความคิดเห็นต่างๆ ระหว่างสมาชิกของวิทยาลัยฯ
3. สนับสนุนกิจกรรมการศึกษาต่อเนื่องด้วยตนเองของสมาชิก

เพื่อให้บรรลุวัตถุประสงค์ดังกล่าว วารสารประจำศัลยศาสตร์ ยินดีรับบทความเป็นสื่อกลางระหว่างสมาชิก เพิ่มพูนความรู้ทางวิชาการแก่สมาชิกและวิชาการสาขาอื่นที่เกี่ยวข้อง บทความที่ส่งมาต้องไม่เคยพิมพ์เผยแพร่มาก่อน ข้อคิดเห็นในบทความ เนื้อหา และองค์ประกอบของเนื้อหาเป็นความรับผิดชอบของผู้เขียนบทความนั้น วิทยาลัย ประจำศัลยศาสตร์แห่งประเทศไทยไม่จำเป็นต้องเห็นพ้องด้วย และคณะกรรมการขอสงวนสิทธิ์ในการตรวจทาน แก้ไขและพิจารณาตีพิมพ์โดยมีหลักเกณฑ์ดังนี้

1. ประเภทบทความ

นิพนธ์ต้นฉบับ (Original articles)

เป็นรายงานผลงานวิจัย ค้นคว้า การเขียนบทความนิพนธ์ต้นฉบับให้ล้ำด้วยเนื้อหาดังต่อไปนี้

1. ชื่อเรื่อง (title), ผู้นิพนธ์ (author and co - authors), สถาบันที่ผู้นิพนธ์ปฏิบัติงาน (institute) และ แหล่งทุนสนับสนุน (ถ้ามี)
2. บทคัดย่อ (abstract) ทั้งภาษาไทยและภาษาอังกฤษ
3. คำสำคัญ (key word) สำหรับจัดทำด้วย ระบุไว้ใต้บทคัดย่อหรือ abstract
4. บทนำ (introduction)
5. วัสดุและวิธีการ (materials and methods)
6. ผลการศึกษา (results)
7. วิจารณ์ (discussions)
8. สรุป (conclusions)
9. เอกสารอ้างอิง (references)

บทความปริทัศน์ (review articles)

ควรเป็นบทความที่ให้ความรู้ใหม่ รวบรวมสิ่งตรวจพบใหม่ หรือเรื่องที่น่าสนใจที่สามารถนำไปประยุกต์ใช้ได้ หรือเป็นบทความวิเคราะห์โรค หรือ วิจารณ์สถานการณ์การเกิดโรค ประกอบด้วย

1. บทนำ (introduction)
2. วัตถุประสงค์ (objective)
3. เนื้อหาวิชา (content)
4. วิจารณ์ (discussions)
5. สรุป (conclusions)
6. เอกสารอ้างอิง (references)

รายงานผู้ป่วย (care report)

เขียนได้ 2 แบบ คือ รายงานอย่างละเอียด หรือสั้นๆ ประกอบด้วย บทนำ รายงานผู้ป่วยวิจารณ์อาการทางคลินิกผลตรวจทางห้องปฏิบัติการ เสนอ ข้อคิดเห็นอย่างมีขอบเขต สรุป บทคัดย่อ แนะนำให้มีภาษาไทย และภาษาไทย

บทความพิเศษ (special articles)

เขียนจากประสบการณ์ แสดงความคิดเห็น หรือจากการค้นคว้า

เทคนิคและเครื่องมืออุปกรณ์ (technique & instrumentation)

เพื่อเสนอเทคนิค หรืออุปกรณ์ใหม่ โดยจะต้องบอกชื่อปั๊ม แหล่งการรักษาด้วย

จดหมายถึงบรรณาธิการ (letter to the editor)

เพื่อให้ความคิดเห็นเกี่ยวกับบทความที่ตีพิมพ์ไปแล้ว

2. เอกสารอ้างอิง (Reference)

การอ้างอิงใช้ตาม Vancouver Style หรือ Uniform Requirement for Manuscripts Submitted to Biomedical Journals, 5th edition ค.ศ. 1997 โดยได้ตัวเลขยกระดับในเนื้อเรื่องตรงบริเวณที่อ้างอิง เรียงตามลำดับก่อนหลังการอ้างอิง แล้วจึงนำเอกสารที่ถูกอ้างอิงมาเรียงตามลำดับการอ้างอิงท้ายบทความ บทความที่มีผู้นิพนธ์ไม่เกิน 6 คน ให้ใส่ชื่อผู้นิพนธ์ทั้งหมด ถ้าเกิน 6 คน ให้ใส่ 6 คน แล้วตามด้วย “et al.” หรือ “และคณะ”

การอ้างอิงเอกสาร

Ratanalert S, Chompikul J, Hirunpat S, Pheunpathom N. Prognosis of severe head injury: an experience in Thailand. Br J Neurosurg 2002; 16(5):487-93.

การอ้างอิงวารสาร online

Sanders GD, Bayourni AM, Holodnity M, Owens DK. Cost-effectiveness of HIV screening in patients older than 55 year of age. Ann Intern Med [cited 2008 Oct 7]:148(2). Available from:<http://www.annals.org/cgi/reprint/148/12/889.pdf>

การอ้างอิงจาก World Wide Web

National Institute for Health and Clinical Excellence. Head injury triage, assessment, investigation and early management of head injury in infants, children and adults. Clinical guideline June 2003. <http://www.nice.org.uk/guidance/CG4/?c=91522> (accessed 23 November 2006).

การอ้างอิงหนังสือ หรือตำรา

ชื่อผู้เขียน. ชื่อหนังสือ. ครั้งที่พิมพ์ ชื่อเมือง (ใช้ชื่อเมืองชื่อเดียว): ชื่อโรงพิมพ์ ปี ค.ศ. ตั้งอย่าง : Greenberg MS. Handbook of Neurosurgery. New York: Thieme: 2001.

บทในหนังสือหรือตำรา

ชื่อผู้เขียน. ชื่อเรื่อง. ใน: ชื่อบรรณาธิการ. ชื่อหนังสือ. ครั้งที่พิมพ์. ชื่อเมือง. ชื่อโรงพิมพ์. ปี ค.ศ.: หน้าแรก-หน้าสุดท้าย

ตัวอย่าง: Y. Matsushima. Moyamoya disease. In: Youmans JR. editor. Neurological surgery. 4th ed. Philadelphia: W.B. Saunders; 1996: p. 1202-222.

3. การพิมพ์และการส่งต้นฉบับ

- ให้ส่งต้นฉบับที่จะลงตีพิมพ์ โดยโปรแกรมที่ใช้พิมพ์ต้องเป็น Microsoft Word. Font Angsana New ขนาดตัวอักษร 16 พร้อมไฟล์ประกอบรูปภาพ และกราฟ ไปยัง e-mail ของ คุณเพ็ญศรี ณัฐวงศ์ E-mail: pensrilib@yahoo.com
- การพิมพ์เนื้อเรื่องให้ใส่เลขหน้ากำกับทุกหน้าที่มุ่งหมายด้านบน

หน้าแรก หรือ **title page** เขียนเป็นภาษาไทยและอังกฤษ ประกอบด้วย

- (1) ชื่อเรื่อง
- (2) ชื่อ สกุลของผู้เขียน คุณวุฒิ โดยใช้ตัวอย่างของปริญญาหรือคุณวุฒิที่เป็นสากล (กรณีที่ผู้นิพิธ์มีหลายคน ให้ระบุทุกคน)
- (3) สถานที่ทำงาน
- (4) ชื่อเรื่องอย่างย่อ หรือ running title (ความยาวไม่เกิน 40 ตัวอักษร)

4. การรับเรื่องตีพิมพ์

หากต้นฉบับที่เสนอมาได้รับการพิจารณาให้นำมาลงตีพิมพ์ ทางสำนักงานจะแจ้งให้เจ้าของบทความทราบ พร้อมทั้งจัดส่งฉบับร่างให้ผู้เขียนตรวจสอบและขอคืนตามกำหนดเวลา

5. สถาบันที่ติดต่อ

รองศาสตราจารย์นายแพทย์ภัทรวิทย์ รักษ์กุล หน่วยประจำศัลยศาสตร์ คณะแพทยศาสตร์ มหาวิทยาลัยธรรมศาสตร์ ปทุมธานี 12120 โทร 02-7181996 หรือ โทรสาร 02-7181997

หรือติดต่อ คุณเพ็ญศรี ณัฐวงศ์

E-mail: pensrilib@yahoo.com

บทบรรณาธิการ

วารสารประสาทศัลยศาสตร์ฉบับนี้ จัดทำขึ้นเพื่อตอบสนองสมาชิกราชวิทยาลัยประสาทศัลยแพทย์แห่งประเทศไทยและผู้สนใจ เป็นบทความที่ได้รับจากสมาชิกส่งติพิมพ์มาเพื่อเผยแพร่และแลกเปลี่ยนความรู้ระหว่างสมาชิกด้วยกัน สำหรับฉบับนี้มีบทความที่น่าสนใจหลายเรื่องด้วยกัน เป็นต้นว่าเรื่อง ความบกพร่องทางชاعณ์ปัญญาในผู้ป่วยหลังได้รับบาดเจ็บที่สมอง จาก ศ.นพ.สุวนันธ์ รัตนเลิศ และคณะ เป็นผู้นิพนธ์ เป็นเนื้อหาที่เกี่ยวข้องกับงานด้านอุบัติเหตุของพวกราเป็นส่วนใหญ่ โดยคณะผู้วิจัยใช้เวลาเก็บข้อมูลถึง 4 ปี ที่น่าจะเป็นประโยชน์ในการพัฒนาดูแลผู้ป่วยอย่างเป็นองค์รวมมากขึ้น นอกจากนี้ยังมีรายงานการศึกษาการเปรียบเทียบการใส่ส่ายระบายน้ำเลี้ยงสมองด้วยเทคนิคต่างกันที่รวมไว้อย่างน่าสนใจจาก รศ.นพ.เอก หังสสูตร และคณะ รวมทั้งรายงานการศึกษาผลลัมฤทธิ์ระยะยาวในการผ่าตัดล้มซักในระยะยาวจาก นพ.ผดุงชาญ นิวัฒน์ภูมินทร์และคณะที่ใช้ระยะเวลาในการรวมข้อมูล 10 ปี เป็นข้อมูลการผ่าตัดล้มซักที่ให้ข้อมูลสมบูรณ์เป็นอย่างยิ่งเรื่องหนึ่ง และรายงานเรื่องสุดท้ายเป็นรายงานของ นพ.สัญชัย นาคะพันธ์ที่วิเคราะห์แนวทางการรักษาภาวะ middle cerebral artery infarction ไว้อย่างน่าสนใจ

สุดท้ายนี้ขอขอบคุณ ผู้นิพนธ์และคณะทุกท่าน คณะกรรมการราชวิทยาลัยประสาทศัลยแพทย์แห่งประเทศไทย และ กองบรรณาธิการทุกท่านที่ให้ความอนุเคราะห์ในการตรวจต้นฉบับ ทั้งนี้ทางคณะกรรมการบรรณาธิการจะพยายามพัฒนาและปรับระบบให้การสารานุกรมีมาตรฐานและให้การสนับสนุนให้สมาชิกทุกท่านที่ส่งมาตีพิมพ์เผยแพร่ได้รวดเร็วยิ่งขึ้น เพื่อให้สมาชิกได้รับเนื้อหาที่สมบูรณ์ ยิ่งขึ้น

รองศาสตราจารย์ นายแพทย์ ภัทรวิทย์ รักษ์กุล

บรรณาธิการวารสาร

วารสารประจำศึกษาศาสตร์
ปีที่ 6 ฉบับที่ 1 มกราคม – มิถุนายน 2558

Neurological Surgery
Vol. 6 No. 1 January – June 2015

สารบัญ

๘ ความบกพร่องทางชा�ณปัญญาในผู้ป่วยหลังได้รับบาดเจ็บที่สมอง	1
ส่งวนสิน รัตนาเลิศ	
สาวิตรี อัชณางค์กรชัย	
ศักดิ์ชัย แซ่เขี้ยง	
จิราภรณ์ เอี่ยวสกุล	
๘ Comparison Infection Rate between Inside Out and Outside In Tunneling of External	9
Ventricular Drains	
Ake Hansasuta	
Kobkit Sangkarin	
๘ พลสัมฤทธิ์ยะยาوا และปัจจัยที่ใช้พยากรณ์โรคหลังการผ่าตัดผู้ป่วยโรคลมชัก	18
ที่เกิดจากความพิดปกติของคลื่นไฟฟ้าสมองส่วนนอกเทมพอร์อัล	
Long-term seizure outcome and prognostic factors after extratemporal epilepsy surgery	
ผดุงชาญ นิวัฒน์ภูมินทร์	
สิรรุจน์ สกุลณะมารค	
โยธิน ชินวัลัญช์	
ชาครินทร์ ณ บางช้าง	
๘ Malignant Middle Cerebral Artery (MCA) Infarction : How to Manage Now ?	31
Sanchai Nakaphan	

ความบกพร่องทางชा�ณปัญญาในผู้ป่วยหลังได้รับบาดเจ็บที่สมอง

สงวนสิน รัตนเลิศ, พ.บ.*

สาวิตรี อัชนาวงศ์กรชัย, พ.บ.**

ศักดิ์ชัย แซ่เง้ง, พ.บ.*

ฐากร เอียวสกุล, พ.บ.*

*หน่วยประสาทศัลยศาสตร์ ภาควิชาศัลยศาสตร์ คณะแพทยศาสตร์ มหาวิทยาลัยสงขลานครินทร์

**หน่วยระบบประสาทวิทยา คณะแพทยศาสตร์ มหาวิทยาลัยสงขลานครินทร์

บทคัดย่อ Abstract

การศึกษาเชิงพรรณนาแบบเก็บไปข้างหน้าของความบกพร่องทางชा�ณปัญญาในผู้ป่วยบาดเจ็บที่สมองที่เข้ารับการศึกษาในโรงพยาบาลสงขลานครินทร์ ตั้งแต่เดือนมกราคม 2553 – ธันวาคม 2556 พบว่าเมื่อออกรายงาน 187 รายในผู้ป่วยที่ทดสอบได้ 521 ราย คิดเป็นร้อยละ 35.89 และมีผู้ป่วยจำนวน 30 รายที่มีความบกพร่องทางชा�ณปัญญาในขณะออกจากโรงพยาบาล แต่ไม่มีนัดติดตามด้านประสาทศัลยกรรม ทำให้ผู้ป่วยและญาติขาดโอกาสที่จะได้รับข้อมูลการดูแลและเฝ้าระวังอาการหรือความบกพร่องของการทำงานหรือใช้ชีวิตประจำวันอันเนื่องจากความบกพร่องทางชा�ณปัญญา การตรวจผู้ป่วยด้วย MMSE จึงควรกระทำทุกรายในผู้ป่วยบาดเจ็บที่สมองก่อนให้กลับบ้าน

Cognitive impairment in patients after traumatic brain injury

Sanguansin Ratanalert, M.D.*, Sawitri Assanangkornchai, M.D., Sakchai Seahang, M.D.*,**

Thakul Oewakul, M.D.*

**Division of Neurosurgery, Department of Surgery, **Division of Epidemiology, Faculty of Medicine, Songklanagarind University*

Cognitive deficit after traumatic brain injury (TBI) was prospectively studied in patients admitted in Songklanagarind Hospital during January 2010 to December 2013. At discharge, 187 out of 521 cases had cognitive deficit, as defined by an MMSE score <23. Thirty cases of this group were not scheduled for follow up due to routine post-treatment neurological examinations were unremarkable. This finding emphasizes the importance of cognitive measurements such as the MMSE in TBI patients, and can assist health care teams to add appropriate information and suggest appropriate interventions to patients and their families.

Keywords: TBI, MMSE, Cognitive

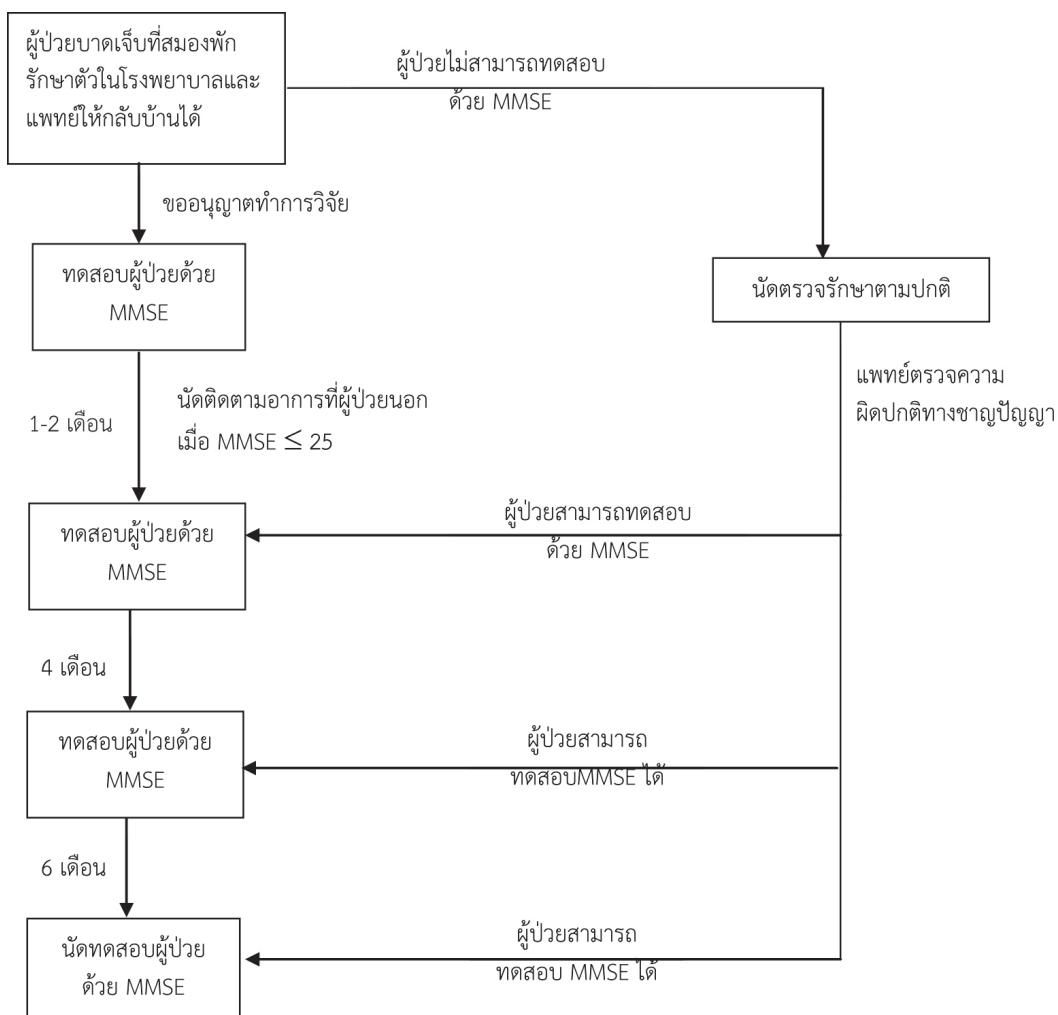
บทนำ

จากข้อมูลการสำรวจความพิการ พ.ศ. 2555¹ พบว่า มีผู้พิการในประเทศไทยที่มีสาเหตุจากอุบัติเหตุจราจรทางบกเป็นจำนวนสูงถึง 84,199 ราย ซึ่งสร้างภาระให้กับผู้ป่วย ครอบครัวและสังคม นอกจากความพิการทางกายแล้วความบกพร่องทางชัญปัญญา (cognitive impairment) ยังเป็นปัญหาที่พบได้บ่อยในผู้ป่วยที่ได้รับบาดเจ็บที่ศีรษะ^{2,3} Rimel และคณะได้ติดตามผลการรักษาผู้ป่วยบาดเจ็บที่ศีรษะเล็กน้อย (mild head injury) ณ 3 เดือนหลังบาดเจ็บ⁴ พบว่าผู้ป่วยร้อยละ 59 มีความจำบกพร่อง และหากเป็นกลุ่มผู้ป่วยบาดเจ็บที่ศีรษะปานกลาง⁵ (moderate head injury) อัตราการมีความจำบกพร่องจะสูงถึงร้อยละ 90 Levin และคณะศึกษาในผู้ป่วยบาดเจ็บที่ศีรษะที่มีระดับสติปัญญาปกติ (IQ ≥ 85) พบว่าผู้ป่วยที่ได้รับบาดเจ็บที่ศีรษะระดับปานกลางร้อยละ 16 มีความจำบกพร่อง และ ผู้ป่วยบาดเจ็บที่ศีรษะชนิดรุนแรง (severe head injury) ร้อยละ 25 มีความจำบกพร่อง⁷ นอกจากนี้ Oddy และคณะยังพบว่า ถึงแม้ว่าจะผ่านไป 7 ปีแล้ว ผู้ป่วยบาดเจ็บที่ศีรษะชนิดรุนแรงถึงร้อยละ 79 ยังมีภาวะบกพร่องทางความจำคงอยู่⁷ ดังนั้น Goold และคณะ⁸ จึงได้นะนำว่าควรจะทดสอบความบกพร่องทางชัญปัญญาในผู้ป่วยบาดเจ็บที่ศีรษะทุกราย ก่อนออกจากโรงพยาบาล

Mini-Mental State Examination (MMSE)⁹ เป็นเครื่องมือที่นิยมใช้มากในการคัดกรองความบกพร่องทางชัญปัญญา ได้รับการแปลและนำไปใช้ได้ในหลายประเทศ

ในประเทศไทย Thai-MMSE -Mini Mental State Examination เป็นเครื่องมือประเมินระดับชัญปัญญาเบื้องต้น ฉบับภาษาไทย ได้ผ่านการทดสอบและใช้อย่างแพร่หลาย ทั้งในโครงการวิจัยและในการดูแลรักษาผู้ป่วยทางคลินิก เช่นราย แต่ในเวชปฏิบัติทั่วไปทางด้านประสาทศัลยกรรม ยังไม่มีการนำมาใช้ คณะผู้วิจัยจึงได้จัดทำโครงการวิจัยเกี่ยวกับการนำเครื่องมือ MMSE มาใช้ในเวชปฏิบัติกับผู้ป่วยบาดเจ็บที่ศีรษะ เพื่อศึกษาความซุกของความบกพร่องทางชัญปัญญาของผู้ป่วยในระยะเวลาต่างๆ หลังการบาดเจ็บเพื่อนำมาประกอบการวางแผนรักษา ติดตามและการฟื้นฟูสมรรถภาพได้อย่างเหมาะสม วิธีการวิจัย

โครงการนี้เป็นการวิจัยเชิงพรรณนาแบบเก็บไปข้างหน้า (prospective descriptive study) ในผู้ป่วยบาดเจ็บที่สมองที่ได้รับการรักษาในโรงพยาบาลส่งชลนครินทร์ โดยมีเกณฑ์การคัดเลือกผู้ป่วยเข้าในการศึกษาดังแสดงในตารางที่ 1 และแบบแผนการวิจัย (แผนภูมิที่ 1)


แต่ไม่รวมถึงผู้ป่วยบาดเจ็บที่ใบหน้า เช่น บาดแผลฉีกขาดที่ใบหน้า (facial laceration) กระดูกหน้าแตก มีวัตถุแปลกลломเข้าไปในตา หู จมูก หรือมีเลือดกำเดาไหลเป็นต้น แต่การบาดเจ็บเหล่านี้อาจพบร่วมกับบาดเจ็บที่ศีรษะได้

เครื่องมือวิจัยและวิธีการเก็บข้อมูล

ในโครงการนี้ใช้แบบประเมิน Thai Mental State Examination (TMSE) เป็นเครื่องมือเก็บข้อมูลระดับชัญ

ตารางที่ 1 เกณฑ์การเลือกประชากรเข้าห้องเรียนจากการศึกษา

เกณฑ์การเลือกประชากรเข้าในการศึกษา (Inclusion criteria)	เกณฑ์การคัดประชากรออกจาก การศึกษา (Exclusion criteria)
1. ผู้ป่วยชายหรือหญิงอายุ 15 ปี ขึ้นไป	1. ผู้ป่วยที่ไม่สามารถพูดจาสื่อสารในระดับที่จะทำการทดสอบทางจิตประสาทวิทยาได้
2. ผู้ป่วยที่มีลักษณะทางคลินิกดังต่อไปนี้อย่างน้อย 1 ข้อ คือ	
<ul style="list-style-type: none"> - มีประวัติที่แน่นอนว่าศีรษะถูกกระแทก - ตรวจพบมีบาดแผลที่หนังศีรษะหรือหน้าผาก มีการเปลี่ยนแปลงของความรู้สึกตัว แม้เพียงชั่วขณะ 	

แผนภูมิที่ 1 แบบแผนการวิจัย

ปัญญาเบื้องต้น TMSE ได้รับการพัฒนาโดยกลุ่มนักวิจัย พัฒนาสมองไทยและทดสอบในผู้สูงอายุปักติอายุ 60-70 ปีจำนวน 180 คนทั่วประเทศ แบบประเมิน TMSE แบ่งออกเป็นหกหมวด ได้แก่ การรับรู้เวลา สถานที่ และบุคคล (orientations 6 คะแนน) การบันทึกความจำ (registration 3 คะแนน) การใส่ใจ (attention 5 คะแนน) การคำนวณ (calculation 3 คะแนน) การใช้ภาษา (calculation 3 คะแนน) และความจำ (recall 3 คะแนน) รวมเป็นคะแนนเต็มทั้งหมด 30 คะแนน ในการศึกษานี้ใช้จุดตัดที่คะแนนน้อยกว่า 23 คะแนน ในการวินิจฉัยว่าผู้ป่วย มีภาวะบกพร่องทางช่างปัญญา ซึ่งเป็นจุดตัดที่แนะนำให้ใช้ในคนไทยที่จบการศึกษาอย่างน้อยระดับประถมศึกษา

(Ref: Train The Brain Forum Committee. Thai Mental State Examination (TMSE). Siriraj Hospital Gazette, 1993; 45: 359-374) ผู้ช่วยวิจัยผู้มีปริญญาตรีที่มีประสบการณ์ดูแลผู้ป่วยในโครงการวิจัยเกี่ยวกับผู้ป่วยบ้าดเจ็บสมองมาก่อน และได้รับการฝึกหัดการใช้ TMSE เป็นอย่างดีเป็นผู้เก็บข้อมูลในโครงการนี้ โดยการสัมภาษณ์ผู้ป่วยบ้าดเจ็บสมองที่มีคุณสมบัติตามเกณฑ์คัดเข้า-คัดออกตามแบบประเมิน TMSE การสัมภาษณ์ครั้งแรกทำก่อนที่ผู้ป่วยจะออกจากโรงพยาบาล ซึ่งเป็นเวลาที่ผู้ป่วยมีอาการดีขึ้นจนแพทย์ให้กลับบ้านได้ หลังจากนั้นสัมภาษณ์ผู้ป่วยอีกเมื่อผู้ป่วยมาพบแพทย์ตามนัด เพื่อติดตามอาการที่แผนกผู้ป่วยนอก ณ เวลา 1-2 เดือน 4 เดือน และ 6 เดือน

แบบเสนอโครงการนี้ได้ผ่านการรับรองจากคณะกรรมการพิจารณาจริยธรรมการวิจัยในมนุษย์ ของคณะแพทยศาสตร์ มหาวิทยาลัยสงขลานครินทร์ ผู้ป่วยทุกคนรับทราบข้อมูลเกี่ยวกับโครงการวิจัย สิทธิประโยชน์และความเสี่ยงในการเข้าร่วมการศึกษา และลงนามยินยอมเข้าร่วมโครงการก่อนการสัมภาษณ์ครั้งแรก ในกรณีที่ผู้ป่วยไม่สามารถลงนามยินยอมได้ด้วยตนเอง ญาติหรือผู้ดูแลจะเป็นผู้ลงนามแทน

สกัดและการวิเคราะห์ข้อมูล

การวิเคราะห์ทางสถิติเชิงปริมาณด้วยจำนวน ร้อยละ และค่าเฉลี่ย

เกณฑ์การเลือกประชากร ดังแสดงในตารางที่ 1

ผลการศึกษา

จำนวนผู้ป่วยบาดเจ็บที่สมองที่เข้ารับการรักษาในโรงพยาบาลสงขลานครินทร์ ในช่วงเดือนมกราคม 2553 ถึงธันวาคม 2556 มีจำนวน 1,588 คน สามารถทดสอบผู้ป่วยได้ก่อนจำหน่ายออกจากการโรงพยาบาลจำนวน 521 คน ผู้ป่วยจำนวน 303 คน ไม่สามารถทดสอบได้ก่อนออกจากโรงพยาบาลเนื่องจากยังไม่สามารถถือสิ่งได้ยังไม่รู้สึกตัวเต็มที่ ไม่สามารถอ่านและเขียน, มีปัญหาด้านการมองเห็น, ไม่ให้ความร่วมมือในการประเมิน, ยังมีอาการสับสน และเป็นชาตัวต่างชาติ (แรงงานต่างด้าว) หรือเป็นผู้ป่วยชาวไทยที่ไม่สามารถสื่อสารภาษาไทยได้กลุ่มผู้ป่วยที่มีข้อจำกัดทางด้านอาการ/ความรู้สึกตัวสามารถทดสอบได้ในช่วงติดตามอาการอีกจำนวน 69 คน

ในผู้ป่วยจำนวน 1,588 คน แบ่งเป็นเพศชาย 1,194 คน เพศหญิง 387 คน สาเหตุของการบาดเจ็บเกิดจากอุบัติเหตุจราจร 1,194 คน การล้ม/ตก/หล่น 247 คน การถูกทำร้าย 125 คน และไม่ทราบสาเหตุ 22 คน ได้รับการวินิจฉัยโรคเป็น mild head injury (MHI) 1,227 คน moderate head injury (MoHI) 124 คน และ severe head injury (SHI) 237 คน โดยมีการบาดเจ็บในตำแหน่งอื่นๆ ร่วมด้วย ดังรายละเอียดในตารางที่ 2 โดยกลุ่มที่ได้รับการทดสอบ 753 คน พบรั้งจัยเสริมจากการตีมแอลกอฮอล์ก่อนได้รับบาดเจ็บ 228 คน และใช้ทั้งเครื่องตีมแอลกอฮอล์ร่วมกับสารสเปตติด 1 คน ไม่พบปัจจัยเสริม 414 คน ไม่ได้บันทึก 102 คน และสาเหตุอื่นๆ (หลับใน) 8 คน

จากการติดตามภายหลังจากผู้ป่วยกลับบ้านประมาณ 1 เดือน สามารถติดตามทดสอบผู้ป่วยได้จำนวน 248 ราย โดย 142 ราย เป็นผู้ป่วยที่ได้รับการทดสอบก่อนออกจากโรงพยาบาล และ 106 ราย เป็นผู้ป่วยที่ยังไม่ได้รับการทดสอบก่อนออกจากโรงพยาบาล และมีผู้ป่วยบางส่วนหลังจากที่ออกจากโรงพยาบาลไปแล้วมีนัดของคลินิกอื่นๆ เช่น คลินิกเพื่อสุขภาพ คลินิกจิตเวช คลินิกตา คลินิกศัลยกรรมอุบัติเหตุ ศัลยกรรมตกแต่ง แต่ไม่มีนัดของคลินิกประสาทศัลยกรรม จำนวน 283 ราย ไม่มีข้อมูลการนัดของผู้ป่วย 50 ราย ผู้ป่วยปฏิเสธการทดสอบ 25 ราย ผู้ป่วยผิดนัด/มาไม่ตรงนัด 30 ราย (12 รายมาก่อนนัด และ 18 รายมาหลังนัด โดยมาพร้อมกับมาตามนัดในคลินิกอื่น/ลืมวันนัด) ในวันนัดผู้ป่วยกลับเข้ามารับการรักษาในโรงพยาบาล 7 ราย ไม่มาตามนัด 335 ราย

ตารางที่ 2 การวินิจฉัยโรคตามผลการเอกซเรย์คอมพิวเตอร์ในผู้ป่วยที่เข้าร่วมโครงการ (1,588 คน)

การวินิจฉัยโรค	CT Brain		
	Positive	Negative	ไม่ได้ทำ
Mild head injury	235 (14.80)	35 (2.20)	45 (2.83)
Moderate head injury	134 (8.44)	47 (2.96)	5 (0.31)
Severe head injury	476 (29.97)	564 (35.52)	47 (2.96)

ตารางที่ 3 แสดงการติดตามผู้ป่วย

การติดตามผู้ป่วย	จำนวน
จำนวนผู้ป่วยทั้งหมด	1,588
ผู้ป่วยที่ได้รับการทดสอบก่อนออกจากโรงพยาบาล	521
ผู้ป่วยที่ได้รับการทดสอบครั้งแรกที่คลินิกผู้ป่วยนอก	232
ผู้ป่วยที่ไม่ได้รับการทดสอบก่อนออกจากโรงพยาบาล	1,021
ผู้ป่วยถูกจำหน่ายก่อนได้รับการทดสอบ	547
ผู้ป่วยที่ไม่สามารถทำการทดสอบได้	303
ผู้ป่วยเสียชีวิตระหว่างการรักษา	139
ผู้ป่วยที่ยังรักษาอยู่ในโรงพยาบาล	16
ผู้ป่วยถูกส่งต่อไปรักษาที่โรงพยาบาลอื่น	16
ผู้ป่วยที่ไม่ได้รับการทดสอบหลังออกจากโรงพยาบาล	
ผู้ป่วยไม่มีนัด Neuro	283
ไม่มีข้อมูลการนัด	50
ผู้ป่วยที่ไม่มาตามนัดครั้งแรก	742
ผู้ป่วยที่ยังไม่ถึงกำหนดนัดครั้งแรก	35

ตารางที่ 4 แสดงผลการทดสอบผู้ป่วยด้วย MMSE

ระยะของการทดสอบ	น้อยกว่า/เท่ากับ	มากกว่า 22 คะแนนขึ้นไป
	22 คะแนน	
การทดสอบก่อนออกจากโรงพยาบาล	187	334
การทดสอบหลังจำหน่าย ~ 2 สัปดาห์	13	70
การทดสอบหลังจำหน่าย 1 เดือน	53	195
การทดสอบหลังจำหน่าย 2 เดือน	29	82
การทดสอบหลังจำหน่าย 3 เดือน	18	47
การทดสอบหลังจำหน่าย 4 เดือน	11	40
การทดสอบหลังจำหน่าย 5 เดือน	10	29
การทดสอบหลังจำหน่าย 6 เดือน	3	19
การทดสอบหลังจำหน่าย 7 เดือน	5	10
การทดสอบหลังจำหน่าย 8 เดือน	4	9
การทดสอบหลังจำหน่าย 9 เดือน	6	5
การทดสอบหลังจำหน่าย 10 เดือน	2	6
การทดสอบหลังจำหน่าย 11 เดือน	-	6
การทดสอบหลังจำหน่าย 12 เดือน	2	2
การทดสอบหลังจำหน่ายมากกว่า 12 เดือน	4	11

หมายเหตุ ระยะเวลาในการนัดของผู้ป่วยแต่ละรายต่างกัน

ตารางที่ 5 คะแนนเฉลี่ย (ค่าเบี่ยงเบนมาตรฐาน) ของ TMSE แยกรายหมวดในผู้ป่วยบาดเจ็บที่ศีรษะที่มีความบกพร่องของชั้นปัญญา (คะแนนรวมของ TMSE น้อยกว่า 23 คะแนน)

	การรับรู้เวลา สถานที่และบุคคล	การบันทึก ความจำ	การใส่ใจ/ การคำนวณ	ความจำ	การใช้ภาษา
ผลตรวจก่อนออกจากโรงพยาบาล	8.18 (1.901)	2.93 (0.313)	3.71 (1.460)	1.66 (1.161)	6.81 (1.396)
ผลตรวจหลังออกจากโรงพยาบาล	8.92 (1.471)	2.98 (0.170)	4.05 (1.336)	2.14 (1.092)	7.11 (1.413)

ตารางที่ 6 ความสัมพันธ์ระหว่างระดับแอลกอฮอล์ในเลือดแรกที่ห้องฉุกเฉินกับคะแนน TMSE ก่อนออกจากโรงพยาบาล

ระดับแอลกอฮอล์	ระดับคะแนน MMSE		Total
	<22	>22	
ไม่พบแอลกอฮอล์	81 (10.8)	167 (22.2)	248 (32.9)
น้อยกว่า 25 mg	1 (0.1)	3 (0.4)	4 (0.5)
25.1-50 mg	1 (0.1)	7 (0.9)	8 (1.1)
50.1-100 mg	12 (1.6)	20 (2.7)	32 (4.2)
100.1-150 mg	18 (2.4)	22 (2.9)	40 (5.3)
150.1-200 mg	30 (4.0)	36 (4.8)	66 (8.8)
200.1-250 mg	17 (2.3)	41 (5.4)	58 (7.7)
250.1-300 mg	14 (1.9)	21 (2.8)	35 (4.6)
300.1-350 mg	9 (1.2)	10 (1.3)	19 (2.5)
มากกว่า 350 mg	5 (0.7)	7 (0.9)	12 (1.6)
ไม่มีการตรวจ	73 (9.7)	158 (21.0)	231 (30.7)
Total	261 (34.7)	492 (65.3)	753 (100.0)

(มีการติดตามโดยการโทรศัพท์สอบถามอาการ พบร่วม, 221 ราย ไม่มีอาการผิดปกติ สามารถทำงานหรือไปเรียนได้ตามปกติ โดย 45 รายกลับไปรักษาตัวต่อที่โรงพยาบาลใกล้บ้าน, 69 ราย ไม่สามารถติดต่อได้ตามหมายเลขโทรศัพท์ที่ให้ไว้) ยังไม่ครบกำหนดนัด 35 ราย นอกจากนี้ ยังมีผู้ป่วยจำนวน 139 ราย เสียชีวิตระหว่างการรักษา และผู้ป่วยจำนวน 16 รายยังรักษาตัวอยู่ในโรงพยาบาล

ในผู้ป่วยที่มีการทดสอบครั้งแรกพบว่า จากจำนวน 753 ราย (ทดสอบก่อนจำนวน 521 ราย ทดสอบครั้งแรกหลังจำนวน 1 ปีประมาณ 2 สัปดาห์ 43 ราย หลังจำนวน 1 เดือน 106 ราย และหลังจำนวน 2 เดือนขึ้นไป 82

ราย) มีคะแนนน้อยกว่า/เท่ากับ 22 คะแนน จำนวน 261 ราย และมีคะแนนสูงกว่า 22 คะแนน จำนวน 488 ราย โดยจากการติดตามหลังจำนวน 1 เดือนจำนวน 248 ราย พบร่วมผู้ป่วยส่วนใหญ่จะมีคะแนนมากกว่า 22 คะแนนขึ้นไป มีเพียง 53 ราย ที่ยังมีคะแนนน้อยกว่า/เท่ากับ 22 คะแนน

วิจารณ์

ความบกพร่องทางชั้นปัญญาหลังการได้รับบาดเจ็บที่สมอง ส่งผลกระทบต่อทั้งผู้ป่วย ครอบครัวและสังคมโดยรวม¹⁰⁻¹² ในประเทศไทยการศึกษา yang มีอยู่น้อยและไม่สามารถให้อุบัติการณ์ที่ชัดเจนได้ รายงานฉบับนี้จึงเป็น

รายงานแรกที่แสดงถึงอุบัติการณ์ความบกพร่องทางชั้นปัญญาในผู้ป่วยบ้าดเจ็บที่สมองในคนไทย โดยในระยะ 1 เดือนแรกหลังการรักษาพบว่าระดับชั้นปัญญาบกพร่องในผู้ป่วยบ้าดเจ็บที่สมองถึง 3.65% ในผู้ป่วยที่เข้ารับการรักษา (19/521) ในโรงพยาบาลส่งชลนครินทร์ หากรวมกับผู้ป่วยที่มีระดับความรู้สึกตัวต่ำและไม่สามารถทดสอบได้ จะเป็นจำนวนถึง 3.34% (53/1,588) ของจำนวนผู้ป่วยบ้าดเจ็บที่สมองทั้งหมด

ผู้ป่วยที่มีระดับชั้นปัญญาบกพร่องบางราย อาจไม่สามารถตรวจพบจากการตรวจร่างกายหรือเวชปฏิบัติ ทั่วไปได้ ดังข้อมูลผู้ป่วยที่มีระดับชั้นปัญญาบกพร่อง 30 ราย ไม่มีการนัดตรวจติดตามด้านประสาทศัลยกรรม ทำให้ผู้ป่วยและญาติขาดโอกาสที่จะได้รับข้อมูลการดูแลตนเองและเฝ้าระวังอาการหรือความบกพร่องของการทำงานหรือใช้ชีวิตประจำวัน อันเนื่องจากความบกพร่องทางชั้นปัญญา การตรวจผู้ป่วยด้วย MMSE จึงควรกระทำทุกรายในผู้ป่วยบ้าดเจ็บที่สมองก่อนให้กลับบ้าน

การรักษาผู้ป่วยบกพร่องทางชั้นปัญญาประกอบด้วย 1. การรักษาทางจิตเวช เช่น กิจกรรมกลุ่มบำบัด 2. การฟื้นฟูทางชั้นปัญญา (cognitive rehabilitation) และ 3. การใช้ยา เช่น rivastigmine, Donepezil เป็นต้น อย่างไรก็ตาม ยังไม่มียาชนิดใดที่มีผลอย่างมีนัยสำคัญต่อการฟื้นฟูความบกพร่องทางชั้นปัญญาหลังได้รับบาดเจ็บที่สมอง 10 การทำงานเป็นที่มีสหวิชาชีพร่วมกับผู้ดูแลผู้ป่วย จึงเป็นสิ่งจำเป็นที่ต้องดูแลฟื้นฟูชั้นปัญญาของผู้ป่วย

ข้อจำกัดจากการศึกษาซึ่งส่งผลให้สามารถตรวจผู้ป่วยได้เพียง 753 ราย ประกอบด้วย

ปัจจัยด้านผู้ป่วย

- ผู้ป่วยบางรายมีอาการบ้าดเจ็บที่มือ/แขน ทำให้การทดสอบด้านการเขียน/วาดรูปทำได้ไม่เต็มที่ ในส่วนของการเขียนตัวเลข/ข้อความ ผู้ทดสอบเขียนตัวเลขแทนแล้วให้ผู้ป่วยอ่าน/เขียนข้อความตามคำบอกร้องของผู้ป่วย

- ผู้ป่วยบางรายไม่ทราบ/ไม่ได้สนใจเรื่องวันที่

เป็นพื้นฐานอยู่แล้ว จึงทำให้ตอบเรื่องวันไม่ได้

- ผู้ป่วยบางรายแยกชั้นของตัวอาคารไม่ได้ แต่บอกได้ว่าชั้นนั้นๆ มีอะไรบ้าง

- ในผู้ป่วยบางรายยังมีอาการมึน/เบลอ อยู่ในระหว่างการทดสอบทำให้คะแนนออกมาน้อยกว่าที่ควรจะเป็น

- ระหว่างการทดสอบผู้ป่วย บางรายญาติจะพยายามช่วยผู้ป่วยในการตอบมาก พยายามช่วยบอกให้/พูดเบรี่ยบเทียบให้ผู้ป่วยฟัง หากผู้ป่วยตอบเรื่องวันไม่ได้ ญาติจะบอกว่ามีกิจกรรมอะไรที่เกี่ยวข้องกับวันนี้บ้าง เช่น เป็นวันเกิด วันงาน/เทศกัลต่างๆ และหากตอบเรื่องสถานที่ไม่ได้ญาติจะบอกให้ถึงความเกี่ยวข้องของคนที่รู้จัก เช่น มีใครทำงานอยู่ที่นี่บ้าง หรือใครเคยมา_rักษาที่ตัวที่นี่บ้าง

- ในบางรายผู้ป่วยยินยอมและพร้อมรับการทดสอบ แต่ญาติเห็นว่าการทดสอบถักล่าวทำให้ผู้ป่วยต้องใช้ความคิดมาก/ปวดหัว และมองว่าไม่มีความจำเป็นจึงไม่ให้ความร่วมมือในการทดสอบ

- หลังจากที่ผู้ป่วยกลับบ้านและเห็นว่าตนเองไม่มีความผิดปกติ จึงไม่มารับการตรวจรักษาต่อเนื่อง

- ผู้ป่วยบางรายที่มาตรวจตามนัดในครั้งแรก และไม่มาตามนัดในครั้งต่อไป มองว่าการมาตามนัดโดยที่ไม่ได้รับการตรวจ/การรักษา/บำบัดเพิ่มเติมไม่เป็นประโยชน์ในการมาตรวจซ้ำ

- ผู้ป่วยบางรายหากทำการทดสอบในขณะที่ญาติอยู่ด้วย ผู้ป่วยจะไม่ค่อยมีสมารถในการทดสอบ

ปัจจัยด้านการจัดการ

- ผู้ป่วยที่ไม่มาตามนัด ส่วนหนึ่งกลับไปรักษาต่อที่ โรงพยาบาลใกล้บ้าน จึงติดตามต่อไม่ได้

- หมายเลขอรุคัพท์ที่ผู้ป่วยให้ไว้ บางครั้งติดต่อไม่ได้/เป็นหมายเลขอผู้อื่นที่ไม่มีความเกี่ยวข้องกับผู้ป่วย

- ผู้ป่วยบางรายที่ใช้สิทธิ์ประกันสุขภาพถ้วนหน้าของสถานพยาบาลอื่นๆ ไม่ได้รับการส่งตัวมาตรวจตามนัดแต่จะได้รับการตรวจโดยสถานพยาบาลแทน

ข้อมูลที่ได้จากการวิจัยนี้ทั้งผลการตรวจพบและข้อจำกัดทางการวิจัยจึงเป็นประโยชน์ต่อการดำเนินงานวิจัยต่อไป เพื่อหาวิธีการหรือยาที่สามารถช่วยพัฟฟ์ความพร่องทางช้าๆปัญญาในผู้ป่วยบาดเจ็บที่สมองต่อไป

กตติกรรมประจำ

ขอขอบคุณ นายแพทย์อิทธิชัย ศักดิ์อรุณชัย นายแพทย์อราณี ตันธนาธิป แพทย์ประจำหน่วยประจำศัลยศาสตร์ และเจ้าหน้าที่ประจำคลินิกศัลยกรรม โรงพยาบาลส่งขลາนครินทร์ ที่ให้ความร่วมมือในการติดตามประเมินผู้ป่วยในการทำวิจัยครั้งนี้

เอกสารอ้างอิง

- ศูนย์สารสนเทศยุทธศาสตร์ภาครัฐ สำนักงานสถิติแห่งชาติ. “อุบัติเหตุความสูญเสียที่มากกว่าชีวิต” เมษายน 2557. <http://www.nic.go.th/gsic/e-book/accident/accident.pdf> (เข้าถึงเมื่อ 8 มีนาคม 2558).
- Cooper PR, Golfinos JG. Head injury. McGraw-Hill: New York, 2000.
- Levin HS, Eisenberg HM, Aldrich EF. Sequelae of Traumatic brain injury and their management. In: Youmans JR. editor. Neurological Surgery. 4th ed. Philadelphia: WB Saunders; 1996:1825-33.
- Rimel RW, Giordani B, Barth JT, Boll TJ, Jane JA. Disability caused by minor head injury. Neurosurgery. 1981;9(3):221-8.
- Rimel RW, Giordani B, Barth JT, Jane JA. Moderate head injury: completing the clinical spectrum of brain trauma. Neurosurgery. 1982;11(3):344-51.
- Levin HS, Goldstein FC, High WM Jr, Eisenberg HM. Disproportionately severe memory deficit in relation to normal intellectual functioning after closed head injury. J Neurol Neurosurg Psychiatry. 1988;51(10):1294-301.
- Oddy M, Coughlan T, Tyerman A, Jenkins D. Social adjustment after closed head injury: a further follow-up seven years after injury. J Neurol Neurosurg Psychiatry. 1985;48(6):564-8.
- Goold D, Vane DW. Evaluation of functionality after head injury in adolescents. J Trauma. 2009; 67(1):71-4
- Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189-98.
- Arciniegas B, Held K, Wagner P. Cognitive impairment following traumatic brain injury. Curr Treat Option Neurol. 2002;4:43-57.
- Upadhyay D. Cognitive functioning in TBI patients: A review of literature. Middle-East J Sci Res. 2008; 3(3):120-5.
- Shukla D, Devi BI, Agrawal A. Outcome measures for traumatic brain injury. Clin Neurol Neurosurg. 2011; 113:435-41.

Comparison Infection Rate between Inside-Out and Outside-In Tunneling of External Ventricular Drains

Ake Hansasuta M.D.

Kobkit Sangkarin M.D.

Division of Neurosurgery, Department Surgery, Ramathibodi Hospital, Mahidol University

Abstract

Background: An external ventricular drain (EVD) is a valuable procedure in the management of temporary cerebrospinal fluid (CSF) diversion. It is associated with the well-known risk of CSF infection (range, 0% to 27%). But there has been no study which determines EVD related infections between different techniques of tunneling (inside-out vs. outside-in). In theory, we believe that the inside out tunneling reduce the infection by the fact that it does not introduce cutaneous pathogens into the ventricles.

Objective: To compare the infection rates between the different techniques of inside-out and outside-in tunneling of EVD.

Methods: All patients requiring EVD system in Ramathibodi hospital from August 2009 to August 2013 were enrolled. The outside-in group was retrospectively reviewed and prospective data collection was performed in the inside-out group. The evidence of CSF infection prior to the procedure, including meningitis, infected implant (shunt system), or ventriculitis were excluded. CSF samples for culture were collected at the time of EVD insertion and removal. For each patient we record age, sex, diagnosis, GCS at presentation, co morbidity, systemic infection, steroid use, operative time, tunnel length, position of bur hole, duration of EVD in situ, EVD access and cultured organism.

Results: 234 EVDs in 170 patients were included in the study. There were 12 CSF infection noted, 6 of 113 (5.3%) in the inside-out group and 6 of 121 (4.9%) in the outside-in. The infection rate was not significantly different ($P=0.93$). Previous EVD insertion was found to increase the infection rate ($P=0.01$) but gender, GCS, systemic infection, co morbidity, position of EVD, operating time, steroid usage, duration of EVD, SAH and IVH were not correlated.

Conclusions: The infection rates of inside-out and outside in tunneling of EVD were similar. Among various factors, only previous EVD insertion was found to increase infection rate.

Background

External ventricular drains (EVDs) are commonly used to monitor intracranial pressure or to drain the cerebrospinal fluid (CSF) in patients with various etiologies of hydrocephalus. Despite the usefulness of EVDs, the placement is associated with complications, notably CSF infection. In a review from 14 studies, the CSF infection rates ranged from 0% to 27% with a mean of 8.9 %.¹⁻³ Another review that pooled 23 published reports, the infection rates ranged from 2.1% to 22% (mean, 8.8%).^{1,2,4} In addition to being associated with a poor outcome, these infections lead to increased length of stay in the ICU and overall hospital cost.⁵⁻⁹ Several risk factors for EVD related infection have been identified, including craniotomy, systemic infections, depressed cranial fracture, intraventricular hemorrhage (IVH), subarachnoid hemorrhage (SAH), EVD irrigation, neurosurgical intervention, and the duration of EVD in place.^{1,3,4,6,7,10-18} There were several methods to reduce EVD-related infection such as antibiotic prophylaxis,¹⁹ antibiotic coated EVD,^{1,3,5,20} long tunnel length more than 5 cms,^{21,22} elective revision EVD every 5-10 days.^{14,22} However, concerning EVD surgical technique, there was no study that determines EVD-related infection between inside-out and outside-in tunneling of the EVDs. In theory, we believe that the inside out tunneling should minimize infection by the fact that it does not introduce cutaneous pathogens into the ventricles.

Objectives

The primary objective is to compare infection rate between the different techniques of inside-out and

outside-in tunneling of EVD. The secondary objective is to find the incidence of EVD related infection in Ramathibodi hospital and risk factors of EVD related infection.

Methods

Inclusion and Exclusion Criteria

The outside-in group was retrospectively reviewed from August 2009-April 2011 whereas prospective data collection was performed in the inside-out group from May 2011-August 2013. All patients requiring EVD insertion due to hydrocephalus secondary to SAH, spontaneous or traumatic IVH, tumor-related hydrocephalus, intraparenchymal bleeding or cerebral edema were included to the study. The EVD system must be in situ for at least 48 hours. Our exclusion criteria were the evidence of cerebrospinal fluid infection prior to the procedure including meningitis, infected implant (shunt system), or ventriculitis. In addition, any clinical suspiciousness of CNS infection prior to the procedure such as subdural empyema or cerebral abscess were excluded.

Data Collection

The collected data for each patient were age, sex, diagnosis, Glasgow Coma Scale at presentation (GCS), co-morbidity, systemic infection, steroid use, operative time, tunnel length, position of burr hole, duration of EVD in situ, EVD access and culture for organism growth. CSF samples for culture were collected at the time of EVD insertion and removal. The outside-in group was retrospectively reviewed whereas prospective data collection was performed in the inside-out group.

Definition of CSF Infection in Patients with EVD

Ventriculitis was classified as suspected ventriculitis (that is, the patient was treated with antibiotics for ventriculitis on clinical assessment) or proven ventriculitis (that is, a positive EVD CSF culture and treated for ventriculitis). A broader definition was used because clinical presentation and laboratory findings might not, at times, correlate well.

Standard Practice of EVD Placement

All EVDs were inserted in the operating room by attending neurosurgeons or neurosurgery residents. Hair was routinely shaved prior to 2% chlorhexidine in 70% alcohol skin preparation. The most common EVD insertion location was Kocher's point.

1) Outside-in Technique

Feeding tube (8 Fr, 50cm length) was uniformly utilized. By using medium size clamp, subgaleal tunnel was created from a burr hole to a posterior stab incision in order to pull the feeding tube in. This outside-in maneuver was followed by inserting the feeding tube into the ventricle via a tract established by the Cushing's needle.

2) Inside-out Technique

Commercialized set from Yushin Medical company (Seoul, Korea) was universally used. First, the Cushing's needle was not utilized. The EVD was directly inserted into brain cortex until CSF return which indicated entering into the ventricle was observed. Subsequently, by connecting the end of EVD to the trocar for tunneling (Figure 1), subgaleal tunnel was created from the burr hole site to the scalp by inside-out fashion. This EVD trocar-like tunneler (Figure 1) was 15 cms in length with malleability, hence, by this tun-

Figure 1: EVD Trocar-like Tunneler

neler, we could achieve a tunnel length greater than that by the medium size clamp.

For all cases, prophylactic antibiotics were routinely prescribed and continued to the time of their removal.

Risk Factors

The EVD-related infection was examined by multivariate analysis for association with sex, GCS, systemic infection, co-morbidity, position of EVD, operating time, steroid use, duration of EVD in situ, previous EVD insertion, SAH and IVH. Because we were interested in studying the possible causes of EVD infection rather the sequelae of the infection, only the events that occurred before EVD removal or the diagnosis of ventriculitis were considered.

Catheter Duration

We routinely do elective revision of EVD for 5–7 days of in situ except for few cases that their EVDs were left longer than 7 days.

Statistic Analysis

Data were analyzed using SPSS version 18.0 (SPSS Inc, Chicago, USA). Univariate analysis was performed using chi-square test for equal proportion,

Fisher exact tests and Student t-tests. Results are presented as Odd ratio (OR), 95% Confidence interval and probability value of 0.05 indicating statistical significance.

Results

234 EVDs in 170 patients at Ramathibodi hospital were enrolled in the study. Eighteen patients were excluded due to the pre-existing CNS infections. The evaluated patients had mean age of 48.42 ± 20 years (range 1–91 years). Male patients were 54.70%. There were 113 EVDs in the inside-out group and 121 EVDs in the outside-in group. There was no different between the 2 groups with regards to age, diagnosis of IVH, SAH, GCS at present, co-morbidity, systemic infection, steroid use, EVD access, duration of EVD in

situ and previous EVD. (Table 1)

EVD-related infections rate was 6 from 113 (5.3%) in the inside-out group and 6 from 121 (4.9%) in the outside-in group. The infection rate was not different significantly ($P=0.93$).

Incidence of Infection

Our overall infection rate in this study was 5.1% somewhat below than the mean of 8.8%^{1,2,4} from literature review.

Microorganism Isolated in CSF Samples and Catheters

The positive CSF cultures for bacteria were documented in 12 infected patients in both groups. The organisms were listed in Table 2.

Table 1 Characteristics in 170 Patients Undergoing EVD

Characteristic	Inside-out group	Outside-in group	P value
Number of EVDs	113(48.29%)	121(51.71%)	
Number of operations	100(47.16%)	112(52.84%)	
Number of patients	81(47.64%)	89(52.35%)	
Male patients (%)	44(54.32%)	49(55.05%)	0.7
Mean age(yr)	48.1 ± 20.3	49.4 ± 21.2	0.7
Systemic infection	18(15.92%)	30(24.79%)	0.1
Co-morbidity	36(31.86%)	45(37.19%)	0.5
Diagnosis IVH	35(30.97%)	43(35.53%)	0.5
Diagnosis SAH	18(15.93)	30(24.79%)	0.1
Steroid use	33(29.20)	40(33.06%)	0.7
GCS<8	27(23.89%)	34(28.10%)	0.5
Operative time > 1 hr	50(44.24%)	63(52.07%)	0.3
Duration of EVD > 7 days	54(47.79%)	58(47.93%)	0.9
Burr hole position (frontal)	90(79.64%)	96(79.34%)	0.2
Previous EVD	17(15.04%)	14(11.57%)	0.5
CSF access	55(48.67%)	70(57.85%)	0.2

IVH= intraventricular hemorrhage, SAH=subarachnoid hemorrhage, GCS= Glasgow Coma Scale

EVD= External Ventricular Drain.

Risk Factors Associated with Infection

Of 234 EVDs, 5 of 31 (16.12%) previous EVDs had infection. Previous EVD insertion was found to increase EVD-related rate significantly (OR=5.89, P=0.01, 95%CI=1.73-20.03). Sex, GCS, systemic infection, co morbidity, position of EVD, operating time, steroid use, duration of EVD in situ, SAH and IVH were non-significant factors for CSF infection. (Table 3)

Table 2 Incidence of EVD-associated CSF Infection in 12 EVDs

Organism	No. of Infected EVD	%
Acinetobacter	2	16.67%
Micrococcus	2	16.67%
Stenotrophomonas	2	16.67%
Enterobacter	1	8.83%
Propriionibacterium	1	8.83%
Citobacter	1	8.83%
Non lactose fermenting bacilli	1	8.83%
Not identified	2	16.67%

Discussion

External ventricular drains (EVDs) are commonly used to monitor intracranial pressure or to drain cerebrospinal fluid (CSF) in patients with various etiologies of hydrocephalus. Despite the usefulness of EVDs, their placement is associated with EVD-related infection. In a literature review, the mean infection rate was 8.9 %¹⁻⁴ depending on their definitions of infection, inclusion/exclusion criteria and their prophylactic antibiotic usage. Several risk factors for EVD-related infection have been identified including craniotomy, systemic infections, depressed cranial fracture, IVH, SAH, EVD irrigation, neurosurgical intervention, and the duration of EVD in place.^{1,3,4,6,7,10-18} There were several factors identified with reduced rate of EVD-related infection such as antibiotic prophylaxis,¹⁹ antibiotic coated EVD,^{1,3,5,20} long tunnel length > 5 cms,^{21,22} elective revision of EVDs every 5-10 days.^{14,22} However, concerning surgical EVD technique, there has been no study that determines related-infection between inside-out

Table 3 Risk Factors of EVD Infection

Factors	No. infect	No. all	%	OR	p value	95%CI		
Male sex	6	93	6.45	0.70	0.70	0.22	2.28	ns
Steroid use	4	73	5.48	0.95	0.95	0.28	3.26	ns
Co morbidity	3	81	3.7	0.52	0.50	0.14	1.99	ns
Craniotomy	4	57	7.02	1.29	0.70	0.37	4.45	ns
Access of EVD	8	125	6.4	1.42	0.70	0.41	4.87	ns
Previous EVD	5	29	17.24	5.89	0.01	1.73	20.03	significant
IVH	5	78	6.41	1.24	0.80	0.38	4.06	ns
SAH	3	40	7.5	1.47	0.70	0.38	5.69	ns
Duration less than 7 d	4	112	3.57	0.53	0.30	0.15	1.80	ns
Duration less than 10 d	9	146	6.16	1.86	0.50	0.49	7.07	ns
GCS<8	5	116	4.35	4.57	0.95	0.52	1.75	ns
Operative time more than 1 hr	7	113	6.19	1.24	0.80	0.38	4.04	ns

NS =not significant

and outside-in tunneling of the EVDs.

We found our overall EVD-related infection rate to be 5.13%. This is somewhat less than previously reported average of 8.9%.^{1,2,4} However, infection rates of inside-out and outside-in technique were not different (5.3% for inside-out and 4.9% for outside-in, $P=0.93$). In our study, it might, perhaps, be due to a result of strict sterile technique, frequent EVD replacement, antibiotic prophylaxis and our short duration of EVD (mean=7.5 days). These variables might have prevented infection regardless of EVD technique. This may, in fact, imply that we can use both techniques safely provided the variables mentioned earlier exist.

Duration of the EVD in Situ

From Lo et al, multivariate analysis showed that the total duration of drainage was not a significant independent risk factor for EVD-related infection. Similarly, the amount of time each EVD remained in situ was also not a significant risk factor for infection.²³ In recent reviews, there was equal distribution between those who found an effect of drainage duration on EVD-associated CSF infection^{9,14,19,21,24-27} and those who found none.^{3,28-32} Data from the largest series by Sundborg and colleagues^{32,37} with 1,586 patients revealed that prolonged EVD usage did not correlate with infection. Nevertheless, the clear association between the duration of drainage and the infection rate shown by Mayhall et al.¹⁴ represented an astonishing contrast.

Data from our study demonstrated no evidence of a relationship between the amount of time that an EVD remained in situ (less than 7 days or less than 10 days) and the risk of EVD-related infection ($P=0.3$, $OR=0.53$, $CI=0.15-1.80$ and $P=0.5$, $OR=1.86$,

$CI=0.49-7.07$).

Microorganism Isolated in CSF Samples and catheter

The most common infectious organism in microbiological literatures^{3,9,14,19-21,25,26,29-36} is coagulase-negative staphylococcus, accounting for 47% of cases. *Staphylococcus aureus* (14%) and *Klebsiella* (6.6%) are the next most common, with *Acinetobacter* (5.6%) representing the fourth. Our data illustrated noteworthy differences. Our most common bacterial organisms were *Acinetobacter*, *Micrococcus luteus* and *Stenotrophomonas maltophilia* which accounted for almost half of our infections. Our explanation for this occurrence is that, at one time, *Acinetobacter* was endemic in our ICU which coincided with our study period. Uncommon organism in this study may be due to partial treatment by antibiotic (mostly Cefazolin) which resulted in the more frequency of gram negative over gram positive infection.

Previous EVD

Sundborg et al reported 60% of infections occur after an EVD revision.³² Rebuck and colleagues found multiple EVDs to be a significant risk factor for infection, similar to findings from Lo et al.²³ From the only randomized-controlled trial in this subject, Wong et al came across higher infection rate in a group with multiple EVDs than that in another group with just one EVD. However, the differences did not reach statistical significance.²⁰ In three other studies, however, the authors did not discover multiple EVDs as significant risk factor for infection.^{3,9,12} Our data did reveal a clear effect of previous EVDs on the infection rate ($OR=5.89$, $p=0.01$, $CI=1.73-20.03$).

Elective Revision of EVD

The practice of electively revising EVDs, at or around 5 days after insertion, to prevent EVD-associated CSF infection was proposed by Mayhall and colleagues.¹⁴ Indeed, it is only when the retrograde colonization risk predominates that this approach has merit. On the other hand, elective EVD revision increases the patient's exposure to an inoculation risk. As a result, there is doubt whether the retrograde colonization risk can be effectively modified by elective revision. Can placing a new EVD reset the clock for retrograde colonization of the CSF space along the externalized CSF column or around the outside of the EVD? Although this theoretical argument has appeal, the evidence, such as it is, does not support it. The randomized controlled trial conducted by Wong and colleagues demonstrated no benefit from elective EVD revision at Day 5.²⁰ More importantly, although not statistically significant, infections were more common in the group with elective EVD revision. An analysis of the Traumatic Coma Data Bank³⁸ revealed a higher infection rate in centers implementing a policy of elective EVD revision (16.8%) than in centers that did not (7.8%), a difference that closely approached significance ($p = 0.054$).

Tunnel Length

The study by Omar and colleague reported that the technique of subgaleal tunneling > 5 cms reduced the risk of EVD-related infection.²² Another Study by Khanna and colleague noted no infection during the first 16 days of catheterization with extended length of tunneling.²¹ In our study, there was no data collection for the length of the tunnels in the outside-in group. Only 41 tunnel lengths were recorded in the inside-

out group (range 5–10 cm). In our practice, we try to maximize this length as far as possible in order to minimize risk of infection regardless of technique.

Study Limitations

As in retrospective analysis, we must note that the review of patient data has some limitations. For example, the retrospective collection of data might have introduced a selection bias, confounding factors or unavailability of some data i.e. tunnel length. Due to the low incidence of EVD related infection, our 234 EVDs might, in fact, still be too small sample size to create any significant difference.

Conclusions

From 234 EVDs, our infection rates of inside-out and outside-in tunneling of EVD were similar. Among various factors, only previous EVD insertion was found to increase infection rate. This may, in fact, imply that we can use both techniques safely provided the variables mentioned earlier exist.

References

1. Abla AA, Zabramski JM, Jahnke HK, Fusco D, Nakaji P. Comparison of two antibiotic-impregnated ventricular catheters: a prospective sequential series trial. *Neurosurgery* 2011;68(2):437–42; discussion 42.
2. Camacho EF, Boszcowski I, Basso M, Jeng BC, Freire MP, Guimaraes T, et al. Infection rate and risk factors associated with infections related to external ventricular drain. *Infection* 2011;39(1):47–51.
3. Zabramski JM, Whiting D, Darouiche RO, Horner TG, Olson J, Robertson C, et al. Efficacy of antimicrobial-impregnated external ventricular drain catheters: a prospective, randomized, controlled trial. *J Neurosurg* 2003;98(4):725–30.

4. Lozier AP, Sciacca RR, Romagnoli MF, Connolly ES Jr. Ventriculostomy-related infections: a critical review of the literature. *Neurosurgery* 2002;51(1): 170-81; discussion 81-2.
5. Alleyne CH Jr, Hassan M, Zabramski JM. The efficacy and cost of prophylactic and perioperative antibiotics in patients with external ventricular drains. *Neurosurgery* 2000;47(5):1124-7; discussion 7-9.
6. Bota DP, Lefranc F, Vilallobos HR, Brimioule S, Vincent JL. Ventriculostomy-related infections in critically ill patients: a 6-year experience. *J Neurosurg* 2005; 103(3):468-72.
7. Flibotte JJ, Lee KE, Koroshetz WJ, Rosand J, McDonald CT. Continuous antibiotic prophylaxis and cerebral spinal fluid infection in patients with intracranial pressure monitors. *Neurocritical Care* 2004;1(1):61-8.
8. Hoefnagel D, Dammers R, Ter Laak-Poort MP, Avezaat CJ. Risk factors for infections related to external ventricular drainage. *Acta Neurochirurgica* 2008; 150(3):209-14; discussion 14.
9. Lyke KE, Obasanjo OO, Williams MA, O'Brien M, Chotani R, Perl TM. Ventriculitis complicating use of intraventricular catheters in adult neurosurgical patients. *Clin Infect Dis: an official publication of the Infectious Diseases Society of America* 2001;33 (12):2028-33.
10. Arabi Y, Memish ZA, Balkhy HH, Francis C, Ferayan A, Al Shimemeri A, et al. Ventriculostomy-associated infections: incidence and risk factors. *Am J Infect Control* 2005;33(3):137-43.
11. Aucoin PJ, Koutilainen HR, Gantz NM, Davidson R, Kellogg P, Stone B. Intracranial pressure monitors. Epidemiologic study of risk factors and infections. *Am J Med* 1986;80(3):369-76.
12. Holloway KL, Barnes T, Choi S, Bullock R, Marshall LF, Eisenberg HM, et al. Ventriculostomy infections: the effect of monitoring duration and catheter exchange in 584 patients. *J Neurosurg* 1996;85 (3):419-24.
13. Leung GK, Ng KB, Taw BB, Fan YW. Extended subcu-
taneous tunnelling technique for external ventricular drainage. *Br J Neurosurg* 2007;21(4):359-64.
14. Mayhall CG, Archer NH, Lamb VA, Spadola AC, Baggett JW, Ward JD, et al. Ventriculostomy-related infections. A prospective epidemiologic study. *N Engl J Med* 1984;310(9):553-9.
15. Park P, Garton HJ, Kocan MJ, Thompson BG. Risk of infection with prolonged ventricular catheterization. *Neurosurgery* 2004;55(3):594-9; discussion 9-601.
16. Sonabend AM, Korenfeld Y, Crisman C, Badjatia N, Mayer SA, Connolly ES Jr. Prevention of ventriculostomy-related infections with prophylactic antibiotics and antibiotic-coated external ventricular drains: a systematic review. *Neurosurgery* 2011;68(4):996-1005.
17. Voldby B, Enevoldsen EM. Intracranial pressure changes following aneurysm rupture. Part 3: Recurrent hemorrhage. *J Neurosurg* 1982;56(6):784-9.
18. Williams TA, Leslie GD, Dobb GJ, Roberts B, van Heerden PV. Decrease in proven ventriculitis by reducing the frequency of cerebrospinal fluid sampling from extraventricular drains. *J Neurosurg* 2011;115 (5):1040-6.
19. Rebuck JA, Murry KR, Rhoney DH, Michael DB, Coplin WM. Infection related to intracranial pressure monitors in adults: analysis of risk factors and antibiotic prophylaxis. *J Neurol, Neurosurg, Psychiatr* 2000;69 (3):381-4.
20. Wong GK, Poon WS, Wai S, Yu LM, Lyon D, Lam JM. Failure of regular external ventricular drain exchange to reduce cerebrospinal fluid infection: result of a randomised controlled trial. *J Neurol, Neurosurg, Psychiatr* 2002;73(6):759-61.
21. Khanna RK, Rosenblum ML, Rock JP, Malik GM. Prolonged external ventricular drainage with percutaneous long-tunnel ventriculostomies. *J Neurosurg* 1995;83(5):791-4.
22. Omar MA, Mohd Haspiani MS. The risk factors of external ventricular drainage-related infection at hospital kuala lumpur: an observational study. *Malaysian*

J Med Sci: MJMS 2010;17(3):48-54.

23. Lo CH, Spelman D, Bailey M, Cooper DJ, Rosenfeld JV, Brecknell JE. External ventricular drain infections are independent of drain duration: an argument against elective revision. *J Neurosurg* 2007;106(3):378-83.
24. Narayan RK, Kishore PR, Becker DP, Ward JD, Enas GG, Greenberg RP, et al. Intracranial pressure: to monitor or not to monitor? A review of our experience with severe head injury. *J Neurosurg* 1982;56(5):650-9.
25. Paramore CG, Turner DA. Relative risks of ventriculostomy infection and morbidity. *Acta Neurochirurgica* 1994;127(1-2):79-84.
26. Poon WS, Ng S, Wai S. CSF antibiotic prophylaxis for neurosurgical patients with ventriculostomy: a randomised study. *Acta Neurochirurgica Suppl* 1998;71:146-8.
27. Schultz M, Moore K, Foote AW. Bacterial ventriculitis and duration of ventriculostomy catheter insertion. *J Neurosci Nurs: journal of the American Association of Neuroscience Nurses* 1993;25(3):158-64.
28. Ohrstrom JK, Skou JK, Ejlertsen T, Kosteljanetz M. Infected ventriculostomy: bacteriology and treatment. *Acta Neurochirurgica* 1989;100(1-2):67-9.
29. Pfisterer W, Muhlbauer M, Czech T, Reinprecht A. Early diagnosis of external ventricular drainage infection: results of a prospective study. *J Neurol, Neurosurg, Psychiatr* 2003;74(7):929-32.
30. Smith RW, Alksne JF. Infections complicating the use of external ventriculostomy. *J Neurosurg* 1976;44(5):567-70.
31. Stenager E, Gerner-Smidt P, Kock-Jensen C. Ven-triculostomy-related infections—an epidemiological study. *Acta Neurochirurgica* 1986;83(1-2):20-3.
32. Sundbarg G, Nordstrom CH, Soderstrom S. Complications due to prolonged ventricular fluid pressure recording. *Br J Neurosurg* 1988; 2(4):485-95.
33. Arai H, Sato K, Katsuta T, Rhoton AL Jr. Lateral approach to intraorbital lesions: anatomic and surgical considerations. *Neurosurgery* 1996;39(6):1157-62; discussion 62-3.
34. Khan SH, Kureshi IU, Mulgrew T, Ho SY, Onyiuke HC. Comparison of percutaneous ventriculostomies and intraparenchymal monitor: a retrospective evaluation of 156 patients. *Acta Neurochirurgica Suppl* 1998; 71:50-2.
35. Kim DK, Uttley D, Bell BA, Marsh HT, Moore AJ. Comparison of rates of infection of two methods of emergency ventricular drainage. *J Neurol, Neurosurg, Psychiatr* 1995;58(4):444-6.
36. Winfield JA, Rosenthal P, Kanter RK, Casella G. Duration of intracranial pressure monitoring does not predict daily risk of infectious complications. *Neurosurgery* 1993;33(3):424-30; discussion 30-1.
37. Sundbarg G, Kjallquist A, Lundberg N, Ponen U. Complications due to prolonged ventricular fluid pressure recording in clinical practice. In: Brock M, Dietz H, editors. *Intracranial Pressure. Experimental and Clinical Aspects*. Berlin: Springer-Verlag; 1972. p. 348-52.
38. Luerssen TG, Chesnut RM, Van Berkum-Clark M, Marshall LF, Klauber MR, Blunt BA, et al. Post-traumatic cerebrospinal fluid infections in the Traumatic Coma Data Bank: the influence of the type and management of ICP monitors. Berlin: Springer-Verlag 1993. p. 42-45.

ผลสัมฤทธิ์ระยะยาว และปัจจัยที่ใช้พยากรณ์โรคหลังการผ่าตัด ผู้ป่วยโรคคลื่นซักที่เกิดจากความผิดปกติของคลื่นไฟฟ้า สมองส่วนนอกเทมพอรัล

Long-term Seizure Outcome and Prognostic Factors After Extratemporal Epilepsy Surgery

ผดุงชาญ นิวัฒน์ภูมินทร์*, พบ.
สิรุจัน ศกุลณัมรรคา*, พบ.
โยธิน ชินวัลลัญช์**, พบ.
ชาครินทร์ ณ บางช้าง***, พบ.

*หน่วยศัลยกรรมประสาท กองศัลยกรรม, **กองอายุรกรรม,
***กองกุมารเวชกรรม โรงพยาบาลพระมงกุฎเกล้า, กรุงเทพฯ

Abstract

Background: Surgery is an important therapeutic option in patients with intractable epilepsy. Seizure outcome after resective surgery for patients in extratemporal epilepsy vary tremendously in the literature with short duration time of follow-up.

Objective: To assess seizure outcome and prognostic factors in patients who had undergone extratemporal epilepsy surgery for management of intractable seizures.

Methods: Independent, experienced surgeon retrospectively reviewed a single surgeon database between 2003 and 2013 and identified 50 patients who underwent extratemporal epilepsy surgery for intractable seizure. We evaluated the correlation between the seizure outcome and the following clinical parameters (demographic data, preoperative factors including MRI brain and seizure information, location of resection, neuropathology reports and extent of resection). Multivariable analysis was performed to assess prognostic factors for seizure outcome.

Results: Forty-five patients were performed resective epilepsy surgery (frontal resection 42%, parietal resection 20%, occipital resection 6% and multilobar resection 22%). One patient underwent hemispherectomy (2%) and four patients did not undergo resection (8%) due to epileptogenic foci on cortical eloquent area. Forty-seven patients (94%) underwent two-staged operation for subdural grid implantation. Median follow-up was 4.67 years (range 0.67–9.33). Seizure remission was 36% and seizure cure was 20%. The postoperative Engel Class I outcome was 64% at 1 year, 48% at 2 years, 38% at 3 years and 32% at 5 years. On multivariable analysis, presence of generalized tonic-clonic seizure, ($p=0.039$) and incomplete resection of epileptogenic foci ($p=0.01$) were independent poor prognostic factors.

Conclusion: Extratemporal epilepsy surgery is effective in selected patients according to findings on long-term follow-up.

Keywords: Extratemporal lobe epilepsy, Engel classification

บทนำ (Introduction)

โรคลมชัก (epilepsy) คือ โรคที่ผู้ป่วยมีอาการชักซ้ำโดยที่ไม่มีปัจจัยกระตุ้น (provoking factor) ชัดเจน อาจพบพยาธิสภาพในสมองหรือไม่ก็ได้ ความชุกของโรคลมชักในประเทศไทยที่พัฒนาแล้วอยู่ที่จำนวน 4-9 คน ต่อประชากร 1,000 คน¹⁻³ และพบผู้ป่วยโรคลมชักที่ไม่ตอบสนองต่อการรักษาด้วยยา (medical refractory epilepsy) จำนวนหนึ่งในสามของผู้ป่วยโรคลมชัก⁴⁻⁵ สำหรับความชุกของผู้ป่วยโรคลมชักในประเทศไทยนั้นอยู่ที่ร้อยละ 1 คิดเป็น 700,000 คน จากจำนวนประชากรทั้งหมด 67 ล้านคน และเป็นผู้ป่วยโรคลมชักที่ไม่ตอบสนองต่อการรักษาด้วยยาจำนวน 40,000 คน⁶

ในการรักษาโรคลมชักมีทั้งการรักษาด้วยยา การผ่าตัด การรักษาด้วยอาหาร และการปรับเปลี่ยนพฤติกรรม หลีกเลี่ยงปัจจัยกระตุ้นชัก ในการรักษาด้วยยาหนึ่งไม่มียาตัวใดที่มีประสิทธิภาพในการรักษาได้ดีที่สุดเพียงตัวเดียว และยาทุกชนิดล้วนมีผลข้างเคียง โดยมีร้อยละ 70 ถึง 80 ที่สามารถรักษาด้วยยากันชักชนิดเดียว และมีร้อยละ 20 ถึง 30 ที่ไม่ตอบสนองต่อการรักษาด้วยยา⁷ สำหรับการผ่าตัดนั้น นับตั้งแต่มีการพัฒนาการตรวจโรคลมชักด้วยเครื่องมือต่างๆ ได้แก่ การตรวจหาจุดกำเนิดชักด้วยไฟฟ้า (electroencephalogram, EEG) การตรวจการทำงานของสมองด้วย Positron Emission Tomography (PET) และ Single-Photon Emission Computed Tomography (SPECT) รวมทั้งการตรวจภาพสมองด้วยคลื่นแม่เหล็กไฟฟ้า ทำให้การสืบค้นหาจุดกำเนิดชักและการผ่าตัดโรคลมชักสามารถทำได้มากขึ้น การผ่าตัดผู้ป่วยโรคลมชัก (epilepsy surgery) สามารถลดการชักได้ ไม่ว่าจะเป็นการผ่าตัดเพื่อบรรเทาอาการโรคลมชักให้ดีขึ้น (palliative surgery) หรือการผ่าตัดเพื่อกำจัดจุดกำเนิดชักให้หมด (resection of epileptogenic zone)

มีการศึกษาที่ผ่านมาเกี่ยวกับผลลัมพุทิชลัมการผ่าตัดผู้ป่วยโรคลมชัก (outcomes of epilepsy surgery) ทั้งในแง่ของอัตราการหายชัก (seizure outcome) โดยมักจะใช้การประเมินด้วย Engel's outcome classification⁸

ผลด้านสังคม (psychosocial outcomes) ได้แก่ คุณภาพชีวิต ระดับการศึกษา การทำงานประจำครอบอาชีพและรายได้ สมรรถภาพในการขับขี่ยานพาหนะ และผลด้านจิตเวช และประสาทวิทยา (neuropsychological outcomes) ได้แก่ ระดับสติปัญญา และความจำ และภาวะแทรกซ้อนหลังการผ่าตัด โดยมีการศึกษาทั้งในผู้ป่วยเด็กและผู้ใหญ่ที่เป็นโรคลมชักที่เกิดจากความผิดปกติของคลื่นไฟฟ้าสมองส่วนเทมโพรัล (temporal lobe) และส่วนนอกเทมโพรัล (extratemporal lobe) โดยส่วนมากจะเป็นการศึกษาผลลัมพุทิชลัมการผ่าตัดผู้ป่วยโรคลมชักระยะสั้น และเป็นการศึกษาในผู้ป่วยโรคลมชักที่เกิดจากความผิดปกติของคลื่นไฟฟ้าสมองส่วน temporal lobe

ในปี ค.ศ. 2003 มีการศึกษาแบบ multicenter prospective observational study โดย Spencer และคณะ⁹ เป็นการติดตามผู้ป่วยที่รับการผ่าตัดโรคลมชักระยะเวลานาน 1 ปี จำนวน 355 คน และติดตามเป็นระยะเวลานาน 2 ปี จำนวน 339 คน พบว่าเป็นการผ่าตัด extratemporal epilepsy surgery จำนวนร้อยละ 12 และการศึกษาในปี ค.ศ. 1997 โดย Behrens และคณะ¹⁰ พบว่ามีการผ่าตัด extratemporal epilepsy surgery จำนวนร้อยละ 35 จากผู้ป่วยที่เข้ารับการผ่าตัดโรคลมชักจำนวน 429 คน แบ่งเป็น frontal resection ร้อยละ 14, parietal resection ร้อยละ 2, occipital resection ร้อยละ 3, multilobar resection น้อยกว่าร้อยละ 1, callosotomy ร้อยละ 8 และ hemispherectomy ร้อยละ 8 และพบว่ามีการผ่าตัด extratemporal epilepsy surgery น้อยกว่า temporal epilepsy surgery เนื่องจากการผ่าตัด temporal epilepsy surgery มีอัตราการหายชักที่ดีกว่า คือ ร้อยละ 53 ถึง 84 และมีความชับช้อนในการหาจุดกำเนิดชักน้อยกว่าการผ่าตัด extratemporal epilepsy surgery¹¹⁻¹³

ในการศึกษาเกี่ยวกับผลลัมพุทิชลัมการผ่าตัดโรคลมชักมักเป็นการศึกษาในผู้ป่วยโรคลมชักที่เกิดจากความผิดปกติของคลื่นไฟฟ้าสมองส่วน temporal lobe โดยส่วนใหญ่สรุปว่าการผ่าตัดมีประโยชน์มากกว่าการรักษาด้วยยา และเกิดภาวะแทรกซ้อนจากการผ่าตัดโรค

ลงชักน้อยกว่าการรักษาด้วยยา สำหรับการผ่าตัดผู้ป่วยโรคคลื่นชักที่เกิดจากความผิดปกติของคลื่นไฟฟ้าสมองส่วน extratemporal lobe มีการศึกษาเกี่ยวกับผลสัมฤทธิ์หลังการผ่าตัดในด้านของอัตราการหายชัก อาทิ เช่น

การศึกษาในปี ค.ศ. 2008 โดย Elsharkawy และคณะ เป็นการศึกษาแบบ retrospective ในผู้ป่วยจำนวน 218 คน ที่เข้ารับการผ่าตัดโรคคลื่นชัก¹⁴ พบว่ามีร้อยละ 50 ถึง 65.1 ที่มีอัตราการหายชักระดับ Engel class 1 ที่หลังผ่าตัด 6 เดือน, ร้อยละ 44.1 ถึง 61.3 ที่หลังผ่าตัด 2 ปี และร้อยละ 45.2 ถึง 60.6 ที่หลังผ่าตัด 5 ปี โดยปัจจัยที่เป็นตัวทำนายผลสัมฤทธิ์หลังการผ่าตัดที่ดี ได้แก่ การพบรอยโรคที่มีขอบเขตชัดเจนจากการตรวจภาพถ่ายสมองด้วยคลื่นแม่เหล็กไฟฟ้าก่อนผ่าตัด (the presence of well-circumscribed lesions on preoperative MRI), ระยะเวลาเป็นโรคคลื่นชักก่อนผ่าตัดน้อย (short duration of epilepsy), ผ่าตัดที่อายุน้อยกว่า 30 ปี, พยาอิสสภาพเกิดจากเนื้องอกสมอง ส่วนปัจจัยที่เป็นตัวทำนายผลสัมฤทธิ์หลังการผ่าตัดที่ไม่ดี ได้แก่ การมีอาการนำที่เกี่ยวกับอาการทางจิตเวชก่อนชัก (psychic aura), การชักแบบ generalized tonic-clonic seizure, การชักแบบ versive seizure, เคยได้รับการผ่าตัดโรคคลื่นชักมาก่อน (history of previous surgery) และมีความผิดปกติของ การเรียงตัวของชั้นเนื้อสมองแต่กำเนิด (focal cortical dysplasia) และมีการศึกษาแบบ retrospective ในปีเดียวกันของผู้ป่วยผู้ใหญ่จำนวน 154 คน ที่เข้ารับการผ่าตัดโรคคลื่นชัก¹⁵ พบอัตราการหายดูดชักระดับ Engel class 1 จำนวนร้อยละ 54.5 และ 51.1 เมื่อติดตามผู้ป่วยเป็นระยะเวลาหลังผ่าตัด 1 ปีและ 14 ปี ตามลำดับ โดยยังพบว่าอัตราการหายชักหลังการผ่าตัดเป็นเวลา 2 ปี เป็นปัจจัยที่เชื่อถือได้ในการทำนายอัตราการหายชักระดับยาวยาระดับ Engel class 1 หลังการผ่าตัด

ในปี ค.ศ. 2013 Siew JS และคณะ¹⁶ ได้ศึกษาอัตราการหายชักหลังผ่าตัดในผู้ป่วยโรคคลื่นชักที่เกิดจากความผิดปกติของคลื่นไฟฟ้าสมองส่วน extratemporal lobe ที่ไม่ตอบสนองต่อการรักษาด้วยยาและไม่พบความผิดปกติ

ของภาพถ่ายสมองด้วยคลื่นแม่เหล็กไฟฟ้า จำนวน 60 คน พบว่าระยะเวลาหลุดชักเฉลี่ยนาน 1.52 ปี และอัตราการหายชักใน 2 ปี คือ ร้อยละ 42 โดยปัจจัยที่มีผลต่ออัตราการหายชักที่ดีได้แก่ การกำจัดจุดกำเนิดชักออกหมด (complete resection of ictal onset areas) และการไม่มีภาวะชักหลังผ่าตัดระยะแรก (absence of acute post-operative seizures) และในปีเดียวกันนี้ Dario และคณะ¹⁷ ได้ทำการรวบรวมวิเคราะห์งานวิจัย จำนวน 36 งานวิจัย เกี่ยวกับการผ่าตัดผู้ป่วยเด็กโรคคลื่นชักที่เกิดจากความผิดปกติของคลื่นไฟฟ้าสมองส่วน extratemporal lobe จำนวนรวม 1,259 คน พบว่าอัตราการหายชักระดับ Engel class 1 อยู่ที่ร้อยละ 56 โดยระยะเวลาการชักก่อนเข้ารับการผ่าตัดที่น้อย และโรคคลื่นชักที่มีรอยโรค (lesional epilepsy) จะส่งผลต่อผลสัมฤทธิ์หลังการผ่าตัดที่ดี

สำหรับการศึกษาโดยดูผลสัมฤทธิ์หลังการผ่าตัดระยะยาวในผู้ป่วย non-lesional extratemporal epilepsy มีการศึกษาในปี ค.ศ. 2013 โดย Noe และคณะ¹⁸ เป็นการศึกษาในผู้ป่วย 85 คน มีระยะเวลาติดตามผลเฉลี่ย 9 ปี พบว่าร้อยละ 38 ของผู้ป่วยที่เข้ารับการผ่าตัดวางแผนอิเลคโทรดเพื่อหาจุดกำเนิดชัก (long-term intracranial EEG) และได้รับการผ่าตัดเพื่อกำจัดจุดกำเนิดชัก (resective surgery) มีผลสัมฤทธิ์หลังการผ่าตัดระยะยาวที่ดีเลิศ และการศึกษาอื่นๆ เกี่ยวกับ extratemporal epilepsy surgery¹⁹⁻²⁷ โดยมีระยะเวลาติดตามตั้งแต่ 24 เดือน ถึง 6.4 ปี และมีอัตราการหายชักตั้งแต่ร้อยละ 40.7 ถึง 76

โรงพยาบาลพระมงกุฎเกล้ามีศูนย์รักษาโรคคลื่นชักแบบครบวงจร และได้มีการผ่าตัดโรคคลื่นชักมาอย่างต่อเนื่อง สำหรับในการผ่าตัดผู้ป่วยโรคคลื่นชักที่เกิดจากความผิดปกติของคลื่นไฟฟ้าสมองส่วนนอกเทมโพรัล พบว่ามีจำนวนเพิ่มมากขึ้นอย่างต่อเนื่อง โดยมีการผ่าตัดเพื่อวางแผนอิเลคโทรดใต้เยื่อหุ้มสมองหาจุดกำเนิดชัก (subdural grid implantation) และตามด้วยการผ่าตัดกำจัดจุดกำเนิดชัก แต่จากการรวบรวมงานวิจัยที่เกี่ยวข้องไม่พบว่ามีการศึกษาในกลุ่มประชากรไทยและ

ยังไม่ทราบถึงปัจจัยเสี่ยงที่จะทำให้เกิดการซักหลังผ่าตัดมาก่อน จึงได้จัดทำการศึกษางานวิจัยในครั้งนี้ เพื่อประโยชน์ในการพัฒนาการผ่าตัดโรคคลมซักให้ดียิ่งขึ้นต่อไปในอนาคต

วิธีการดำเนินงานวิจัย (Methods)

1. การเลือกกลุ่มตัวอย่าง (Subjects)

เป็นการศึกษาแบบเก็บข้อมูลย้อนหลัง (retrospective study) โดยใช้ผู้เก็บข้อมูลคนเดียว ในกลุ่มตัวอย่างผู้ป่วยทั้งหมดที่ได้รับการวินิจฉัยโดยอายุรแพทย์ระบบประสาท คุณภาพแพทย์ระบบประสาทหรือประสาทศัลยแพทย์ที่เชี่ยวชาญด้านโรคคลมซัก ว่าเป็นผู้ป่วยโรคคลมซักที่เกิดจากความผิดปกติของคลื่นไฟฟ้าสมองส่วนนอกเทมพอรัลที่ดื้อต่อการรักษาด้วยยาอย่างน้อย 2 ชนิดขึ้นไป และมีการซักแบบขาดการรู้สึกตัวอย่างน้อยเดือนละ 1 ครั้ง (intractable extratemporal epilepsy) และเข้ารับการรักษาด้วยการผ่าตัดกำจัดจุดกำเนิดโรคคลมซักในศูนย์โรคคลมซักครบวงจร โรงพยาบาลพระมงกุฎเกล้า (PMK Comprehensive Epilepsy Center) หลังผ่านการตรวจประเมินก่อนผ่าตัดเพื่อหาตำแหน่งรอยโรค และจุดกำเนิดซักมาแล้ว ตั้งแต่เดือนมกราคม พ.ศ. 2546 ถึงเดือนเมษายน พ.ศ. 2556 จำนวนรวม 58 ราย โดยตัดผู้ป่วยที่หลังการวางแผนอีเลคโทรดแล้วพบว่ามีจุดกำเนิดซักมาจากสมองส่วนเทมพอรัล (temporal lobe epilepsy) และเข้ารับการผ่าตัด temporal resection จำนวน 4 ราย มีภาวะเลือดออกจากการผ่าตัดวางแผนอีเลคโทรดทำให้หาจุดกำเนิดซักไม่ได้ จำนวน 2 ราย และขาดการติดตามผลการผ่าตัด จำนวน 2 ราย ออกจากการศึกษา จึงมีกลุ่มตัวอย่างผู้ป่วยที่ทำการศึกษาร่วมทั้งสิ้น 50 ราย

2. การประเมินก่อนการผ่าตัด (Preoperative evaluation)

ผู้ป่วยที่เข้ารับการศึกษาต้องได้รับการตรวจประเมินก่อนผ่าตัดเพื่อหาตำแหน่งรอยโรค และจุดกำเนิดซัก ได้แก่ การซักประวัติโรคคลมซักของผู้ป่วย ประกอบด้วยการมีหรือไม่มีภาวะซักแบบเกร็งกระตุกทั่ว

(generalize tonic-clonic seizure, GTC) อายุที่เริ่มซักระยะเวลาดำเนินโรคคลมซักก่อนเข้ารับการผ่าตัด ประวัติการผ่าตัดโรคคลมซักในอดีต ประวัติการมีไข้ซักและการบาดเจ็บทางสมองในอดีต และระดับสติปัญญา ก่อนรับการผ่าตัด การจับภาพการซักและตรวจคลื่นไฟฟ้าสมองผ่านหนังศีรษะเพื่อหาจุดกำเนิดซักอย่างต่อเนื่อง (Video-EEG monitoring) โดยใช้อิเลคโทรดติดผ่านหนังศีรษะ (scalp electrodes) การตรวจภาพสมองด้วยคลื่นแม่เหล็กไฟฟ้า (MRI brain, epilepsy protocol) โดยมีการใช้ทั้งเครื่องขนาด 1.5 และ 3 เทสลา (tesla) และใช้ MR imaging protocol โดยรวมภาพ coronal T1-weighted gradient-echo ที่ตัดข่านกับก้านสมอง (brainstem), fluid-attenuated inversion recovery (FLAIR) และ T2-weighted spin-echo กับ T1-weighted inversion recovery ที่ตัดตั้งจากกับสมองส่วน hippocampus นอกเหนือจากการตรวจสมองด้วยคลื่นแม่เหล็กไฟฟ้าตามปกติ และแบ่งลักษณะภาพสมองเป็นตรวจไม่พบรอยโรค (negative lesion) หรือพบรอยโรคแบบมีขอบเขตชัดเจน (well-circumscribed lesions) หรือ ไม่มีขอบเขตชัดเจน (ill-defined lesions) และรอยโรคเดียว (single lesion) หรือหลายรอยโรค (multiple lesions)

หากไม่พบความผิดปกติของภาพคลื่นแม่เหล็กไฟฟ้า สมอง หรือภาพคลื่นแม่เหล็กไฟฟ้าสมองที่พบความผิดปกติไม่สอดคล้องกับลักษณะการซักและจุดกำเนิดการซัก ผู้ป่วยจะได้รับการตรวจทางกัมมันตรังสีด้วย Positron Emission Tomography (PET scan) หรือ Single-Photon Emission Computed Tomography (SPECT) ต่อไป แล้วนำข้อมูลทั้งหมดมาเข้าที่ประชุมการรักษาโรคคลมซัก เพื่อพิจารณาเลือกการผ่าตัด และลักษณะการผ่าตัดที่เหมาะสมต่อผู้ป่วย โดยผู้ป่วยที่ยังได้ข้อมูลจุดกำเนิดการซักไม่ชัดเจน ยินยอมรับการผ่าตัดและไม่มีข้อห้ามต่อการผ่าตัด จะได้รับการผ่าตัดวางแผนอีเลคโทรดใต้เยื่อหุ้มสมอง (subdural grid implantation) เพื่อหาจุดกำเนิดซักต่อไป

3. ขั้นตอนการผ่าตัด (Surgical procedure) และ

การตรวจจับคลื่นไฟฟ้าสมองจากในกะโหลกศีรษะ (Intracranial EEG monitoring)

ในการผ่าตัดวางแผนแผ่นอิเลคโทรดใต้เยื่อหุ้มสมอง (subdural grid implantation) เพื่อหาจุดกำเนิดชักผู้ป่วยกลุ่มนี้จะได้รับการผ่าตัดอย่างน้อย 2 ครั้ง (two-stage surgery) ผ่าตัดครั้งแรกจะเป็นการวางแผนอิเลคโทรดของบริษัท Cortec : PMT corporation หรือ Ad-Tech medical instrument corporation ใต้เยื่อหุ้มสมองบนผิวสมองข้างที่คาดว่ามีจุดกำเนิดชักโดยอาศัยข้อมูลเบื้องต้นที่ก่อร่างกาย โดยประสานศัลยแพทย์ผู้เชี่ยวชาญด้านการผ่าตัดโรคคลื่นชัก ซึ่งผู้ป่วยทุกรายจะได้รับการผ่าตัดจากประสานศัลยแพทย์คนเดียวกัน และหลังจากนั้นผู้ป่วยจะได้รับการตรวจจับคลื่นไฟฟ้าสมอง และบันทึกลักษณะอาการชักอย่างต่อเนื่องในห้องพักสำหรับผู้ป่วย (video-EEG monitoring unit) เป็นระยะเวลา 1 สัปดาห์ โดยอายุรแพทย์ หรือกุมารแพทย์ผู้เชี่ยวชาญด้านโรคคลื่นชัก และในกรณีที่จุดกำเนิดชักใกล้ตัวแขนงสำคัญของสมอง จะทำการตรวจหาตำแหน่งของสมองที่ควบคุมการเคลื่อนไหวและ/หรือการพูดด้วย (Motor and/or language mapping) และวิจัยดำเนินการผ่าตัดเพื่อเอาแผ่นอิเลคโทรดออก และกำจัดจุดกำเนิดชักโดยหลีกเลี่ยงตำแหน่งสมองที่สำคัญอีกครั้ง

4. การประเมินปัจจัยที่คาดว่าเกี่ยวข้องกับผลสัมฤทธิ์หลังการผ่าตัด

4.1 การศึกษาทางจุลพยาธิวิทยา (Histopathological studies)

ผลลัพธ์เนื้อจากการผ่าตัด มาจากการอ่านผลของพยาธิแพทย์ผู้เชี่ยวชาญของสถาบันพยาธิวิทยา โดยแบ่งกลุ่มของผลลัพธ์เนื้อ ได้แก่

4.1.1 Malformations of cortical development ได้แก่ cortical dysplasia, neuronal heterotopia และ microdysgenesis

4.1.2 Tumors ได้แก่ DNET (dysembryoplastic neuroepithelial tumor), ganglioglioma, central neurocytoma, oligodendrogloma และ low grade astro-

cytoma หรือ oligoastrocytoma

4.1.3 Gliosis

4.1.4 Acquired insults ได้แก่ inflammatory process จากโรค Rasmussen's encephalitis และ ischemic results

4.2 ขอบเขตของการกำจัดจุดกำเนิดชัก (Extent of resection)

ขอบเขตของการกำจัดจุดกำเนิดชัก ซึ่งหาได้จากข้อมูลการตรวจจับคลื่นไฟฟ้าสมองจากในกะโหลกศีรษะ (Intracranial EEG monitoring) แบ่งเป็นผ่าตัดกำจัดจุดกำเนิดชักออกหมด (complete resection), ผ่าตัดกำจัดจุดกำเนิดชักออกไม่หมด (incomplete resection) และไม่ได้ผ่าตัดกำจัดจุดกำเนิดชักออก (no resection)

4.3 ปัจจัยที่คาดว่าเกี่ยวข้องกับผลการผ่าตัดอื่นๆ

ปัจจัยที่คาดว่าเกี่ยวข้องกับผลการผ่าตัดอื่นๆ ได้แก่ การซักประวัติหลังการผ่าตัดระยะแรก (ระยะสัปดาห์แรกหลังการผ่าตัด) และตำแหน่งการตัดกำจัดจุดกำเนิดชักโดยแบ่งเป็น frontal resection, parietal resection, occipital resection หรือ multilobar resection การผ่าตัดชนิดอื่น ได้แก่ hemispherectomy

5. การวัดผลสัมฤทธิ์หลังการผ่าตัด (Postoperative seizure outcome)

ผลสัมฤทธิ์หลังการผ่าตัดประเมินจากอัตราการหายชักแบ่งตาม Engel's classifications ตามตารางที่ 1 มีการประเมินอัตราการหายชักหลังการผ่าตัดของผู้ป่วยที่ระยะเวลา 1 ปี, 2 ปี, 3 ปี, 5 ปี และระยะเวลาที่มาติดตามการรักษาล่าสุด และมีการแบ่งเป็นกลุ่มผู้ป่วยที่มีผลสัมฤทธิ์หลังการผ่าตัดดี ได้แก่ ผู้ป่วยที่มีอัตราการหายชักระดับ Engel class I และกลุ่มผู้ป่วยที่มีผลสัมฤทธิ์หลังการผ่าตัดที่ไม่ดี ได้แก่ ผู้ป่วยที่มีอัตราการหายชักระดับ Engel class II, III และ IV

การปลดปล่อยจากการชัก (seizure remission) คือการที่ปราศจากการชักตั้งแต่หลังผ่าตัดเป็นระยะเวลาติดต่อ กันนานมากกว่า 2 ปีขึ้นไป โดยจะมีการใช้ยา กัน

ชักอยู่หรือไม่ก็ได้

การหายจากการชัก (seizure cure) คือ การที่ปราศจากอาการชักตั้งแต่หลังผ่าตัดเป็นระยะเวลาติดต่อ กันนานมากกว่า 5 ปีขึ้นไป โดยจะมีการใช้ยา กันชักอยู่ หรือไม่ก็ได้

นอกจากนี้ยังมีการวัดผลสัมฤทธิ์หลังการผ่าตัดโดย อาศัยจำนวนการใช้ยา กันชักอีกด้วย แบ่งเป็น ใช้ยา กันชัก ชนิดเดียว และใช้ยา กันชักหลายชนิดโดยใช้ยาขนาดคงเดิม ลดลง หรือเพิ่มขึ้น

6. การวิเคราะห์ข้อมูลเชิงสถิติ (Statistical analysis)

ใช้สถิติเชิงพรรณนา ได้แก่ จำนวน ร้อยละ ค่าเฉลี่ย ค่ากลาง การกระจายและส่วนเบี่ยงเบนมาตรฐาน ในการอธิบายลักษณะข้อมูลของผู้ป่วยที่รับการผ่าตัด และวิเคราะห์ตัวแปรเดียว (univariate analysis) หากความสัมพันธ์ระหว่างปัจจัยต่างๆ กับผลสัมฤทธิ์หลังการผ่าตัดผู้ป่วย โดยใช้สถิติเชิงอนุมาน ได้แก่ สถิติ Pearson chi-squared test หรือ Fisher's exact test กรณีที่ข้อมูลเชิงคุณภาพไม่ต่อเนื่อง และใช้สถิติ independent samples t test ในกรณีที่เป็นข้อมูลเชิงปริมาณต่อเนื่อง โดยใช้โปรแกรมสำหรับคำนวณสถิติเป็น Statistics SPSS version 22 for window

นำปัจจัยเบื้องต้นที่ได้จากการวิเคราะห์ตัวแปรเดียว (univariate analysis) โดยที่มี $p < 0.10$ มาวิเคราะห์ต่อ

โดยใช้การวิเคราะห์การถดถอยพหุโลจิสติกส์ (multiple logistic regression) หากความสัมพันธ์กับอัตราการหายชักหลังผ่าตัด และใช้ Odds ratio และระดับความเชื่อมั่น 95 % บอกระดับความสัมพันธ์ โดยกำหนดให้ระดับความมีนัยสำคัญทางสถิติ คือ $p < 0.05$

ผลการศึกษา (Results)

ผู้ป่วยโรคลมชักที่เกิดจากความผิดปกติของคลื่นไฟฟ้าสมองล่วนนอกเทมโพรัล (extratemporal lobe epilepsy) ที่เข้ารับการรักษาด้วยการผ่าตัดกำจัดจุดกำเนิดโรคลมชัก จำนวน 50 ราย มีอายุเฉลี่ย 22.57 ปี แบ่งเป็นเพศชาย 29 ราย (ร้อยละ 58) และเพศหญิง 21 ราย (ร้อยละ 42) ค่ามอริจูนของระยะเวลาติดตามผลการรักษาหลังผ่าตัดนาน 4.67 ปี (การกระจาย $0.67-9.33$) อายุเฉลี่ยที่เกิดอาการชัก 8.72 ปี และค่ามอริจูนของระยะเวลาดำเนินโรคลมชักก่อนเข้ารับการผ่าตัด 7.5 ปี ผู้ป่วยที่เข้ารับการศึกษามีภาวะชักเกร็งกระตุกทั่วตัว จำนวน 18 ราย (ร้อยละ 36) เคยได้รับการผ่าตัดสมองรักษาโรคลมชักในอดีต จำนวน 13 ราย (ร้อยละ 36) และส่วนใหญ่ไม่มีประวัติใช้ชักและไม่ได้รับการบาดเจ็บทางสมองในอดีต และมี 16 ราย ที่มีภาวะพร่องทางสติปัญญา และจากการตรวจภาพถ่ายสมองด้วยคลื่นแม่เหล็กไฟฟ้าก่อนผ่าตัด พบรอยโรค จำนวน 16 ราย (ร้อยละ 32), ไม่พบรอยโรค จำนวน 34 ราย (ร้อยละ 68) ดัง

ตารางที่ 1 Engel's classifications of seizure outcome

- Class I: free from disabling seizures (nondisabling simple partial seizures only since operation, some disabling seizures after operation but free from disabling seizure for more than 2 years)
- Class Ia: completely seizure free since operation
- Class II: rare disabling seizures (initially free from disabling seizure but still have rare seizure, rare disabling seizures since operation, occasional disabling seizures since operation but rare seizures for the last 2 years, nocturnal seizures only)
- Class III: worthwhile improvement (worthwhile seizures reduction, prolonged seizure-free intervals amounting to >50% of follow-up period but not less than 2 years)
- Class IV: no worthwhile improvement (significant seizure reduction, no appreciable change, seizures worse)

ตารางที่ 2

ผู้ป่วยส่วนใหญ่เข้ารับการผ่าตัดวางแผนแผ่นอิเลคโทรด ใต้เยื่อหุ้มสมอง คือ จำนวน 47 ราย (ร้อยละ 94) ก่อน เข้ารับการผ่าตัดกำจัดจุดกำเนิดชัก สำหรับชนิดของการ ผ่าตัด มีจำนวน 1 ราย ที่เป็น Rasmussen's encephalitis แล้วได้รับการผ่าตัดแบบ hemispherectomy แต่ส่วนใหญ่ เข้ารับการผ่าตัดกำจัดจุดกำเนิดชัก โดยแบ่งตามตำแหน่ง ส่วนสมองที่ผ่าตัดเป็นส่วนฟรอนทัล (frontal) จำนวน 21 ราย, ส่วนพาเรียทัล (parietal) จำนวน 10 ราย, ส่วน อกซิปิทัล (occipital) จำนวน 3 ราย และหลายส่วน (multilobar) จำนวน 11 ราย โดยสามารถตัดจุดกำเนิด ชักได้หมด จำนวน 24 ราย (ร้อยละ 48) และมีผู้ป่วย จำนวน 4 ราย ที่ไม่สามารถกำจัดจุดกำเนิดชักได้ เนื่องจาก เป็นตำแหน่งเดียวกับสมองส่วนที่ทำหน้าที่สำคัญในด้าน การเคลื่อนไหวร่างกายและการใช้ภาษา สำหรับผลลัพ phylopathy ของชิ้นเนื้อสมองที่ตัดออกมานั้น พบรูปเป็นความ ผิดปกติแต่กำเนิดของผิวสมอง (Malformations of cortical development) จำนวน 30 ราย แบ่งเป็น focal cortical dysplasia จำนวน 21 ราย, neuronal heterotopia จำนวน 5 ราย และ microdysgenesis จำนวน 4 ราย พบรูปเนื้องอกสมอง (Tumors) จำนวน 6 ราย แบ่งเป็น DNET จำนวน 2 ราย, central neurocytoma จำนวน 1 ราย, pilocytic astrocytoma จำนวน 2 ราย และ oligodendro-glioma จำนวน 1 ราย พบรูป gliosis จำนวน 5 ราย พบรูป การอักเสบลักษณะของ Rasmussen's encephalitis จำนวน 1 ราย และลักษณะสมองขาดเลือด จำนวน 1 ราย (MCA infarction ข้างขวาจาก cortical venous thrombosis) ดังตารางที่ 3

ผู้ป่วยส่วนใหญ่จำนวน 47 ราย (ร้อยละ 94) มี ความถี่การชักลดลงหลังการผ่าตัด ผู้ป่วยทั้งหมดยังคง ต้องใช้ยา鎮静剂 ชักหลังผ่าตัด และส่วนใหญ่สามารถลด ขนาดยา鎮静剂 ได้ และมี 1 รายที่ใช้ยา鎮静剂เหลือแค่ ชนิดเดียวในการติดตามเป็นระยะเวลา 6.25 ปี และ มีแนวโน้มที่จะหยุดยาได้ในอนาคต มีผู้ป่วยจำนวน 18 ราย (ร้อยละ 36) ที่ปลอดอาการชัก และมีจำนวน 10 ราย

(ร้อยละ 20) ที่หายจากการชัก และมีผู้ป่วยจำนวน 13 ราย (ร้อยละ 26) ที่มีการชักหลังผ่าตัดระยะแรก (ภายใน หนึ่งสัปดาห์หลังการผ่าตัด) ซึ่งมีความสัมพันธ์กับอัตรา การหายชักหลังผ่าตัด ดังตารางที่ 4

ผลการศึกษาด้านอัตราการหายชักหลังได้รับการ ผ่าตัด

ผลสัมฤทธิ์หลังการผ่าตัดผู้ป่วยโรคชัก ประเมิน โดยดูจากอัตราการหายชัก (seizure outcome) แบ่ง ระดับตาม Engel's classification พบรูปว่ามีผู้ป่วยที่ไม่มี อาการชัก หรือมีอัตราการหายชักระดับ Engel I (free from any disabling seizure) จำนวน 28 ราย ที่ระยะเวลา 1 ปี หลังรับการผ่าตัด, จำนวน 24 ราย ที่ระยะเวลา 2 ปี หลังรับการผ่าตัด, จำนวน 19 ราย ที่ระยะเวลา 3 ปี หลังรับการผ่าตัด และจำนวน 16 ราย ที่ระยะเวลา 5 ปี หลังรับการผ่าตัด และ ดังตารางที่ 5

ผลการศึกษาเกี่ยวกับปัจจัยที่ใช้พยากรณ์โรคหลัง การผ่าตัด

จากการวิเคราะห์ตัวแปรเดี่ยว (univariate analysis) หาความสัมพันธ์ระหว่างปัจจัยต่างๆ กับผลสัมฤทธิ์หลัง การผ่าตัดผู้ป่วยโรคชัก พบรูปว่า อายุ, อายุที่เริ่มเป็นโรค ชัก, ระยะเวลาเป็นโรคชักก่อนผ่าตัด, ความถี่ในการ ชัก, ประวัติการผ่าตัดโรคชักในอดีต, ประวัติได้รับ บาดเจ็บทางสมอง, ประวัติใช้ชักในอดีต, ลักษณะภาพ คลื่นแม่เหล็กไฟฟ้าสมอง, และผลชิ้นเนื้อทางจุลพยาธิวิทยา ไม่มีความสัมพันธ์ที่มีนัยสำคัญทางสถิติกับผลสัมฤทธิ์ หลังการผ่าตัดผู้ป่วยโรคชัก และพบรูปว่าปัจจัยที่มีความ สัมพันธ์กับผลสัมฤทธิ์หลังการผ่าตัดอย่างมีนัยสำคัญ ทางสถิติ ได้แก่ การมีอาการชักแบบเกร็งกระตุกทั่วตัว ($p=0.018$), การชักหลังผ่าตัดระยะแรก ($p=0.024$) และขอบเขตการตัดจุดกำเนิดชัก ($p=0.005$) ดังตาราง ที่ 6

จากการวิเคราะห์ตัวแปรหลายตัวแปร (multivariate analysis) หาความสัมพันธ์ระหว่างปัจจัยที่ใช้

ตารางที่ 2 แสดงข้อมูลพื้นฐานทั่วไปของผู้ป่วย

	จำนวน	ร้อยละ
เพศ		
ชาย	29	58
หญิง	21	42
อายุ (ปี)		
น้อยกว่า 18	21	42
มากกว่า 18	29	58
ค่าเฉลี่ย土ส่วนเบี่ยงเบนมาตรฐาน	22.57 ± 12.416	
ค่ามัธยฐาน (ต่ำสุด-สูงสุด)	21 (6-60)	
อาชีพ		
นักเรียนนักศึกษา	20	40
ว่างงาน	23	46
ธุรกิจส่วนตัว	2	4
ลูกจ้าง	5	10
ระดับการศึกษา		
ไม่ได้ศึกษา	8	16
ประถมศึกษา	20	40
มัธยมศึกษาตอนต้น	4	8
มัธยมศึกษาตอนปลาย	9	18
ปวช./ปวส.	2	4
ปริญญา	7	14
ความถี่ในการชัก		
หลายครั้งต่อวัน	17	34
บางครั้งต่อวัน	12	24
บางครั้งต่อสัปดาห์	12	24
บางครั้งต่อเดือน	9	18
การมีภาวะชักเกร็งกระตุกทั่วตัว (GTC)		
มี	18	36
ไม่มี	32	64
ประวัติการผ่าตัดโรคลมชักในอดีต		
มี	13	26
ไม่มี	37	74
ประวัติได้รับบาดเจ็บทางสมอง		
มี	4	8
ไม่มี	46	92
ประวัติไข้ชักในอดีต		
มี	1	2
ไม่มี	49	98
ระดับสติปัญญา		
ปกติ	34	68
มีภาวะพร่องทางสติปัญญา	16	32
ลักษณะภาคลิ่นแม่เหล็กไฟฟ้าสมอง		
พบรอยโรค	16	32
ไม่พบรอยโรค	34	68
อายุที่เกิดอาการชัก (ปี)		
ค่าเฉลี่ย土ส่วนเบี่ยงเบนมาตรฐาน	8.72 ± 8.88	
ค่ามัธยฐาน (ต่ำสุด-สูงสุด)	6.0 (0.33-48)	
ระยะเวลาดำเนินโรคลมชักก่อนรับการผ่าตัด (ปี)		
ค่าเฉลี่ย土ส่วนเบี่ยงเบนมาตรฐาน	9.42 ± 8.00	
ค่ามัธยฐาน (ต่ำสุด-สูงสุด)	7.5 (0-30)	
ระยะเวลาติดตามผลการรักษา (ปี)		
ค่าเฉลี่ย土ส่วนเบี่ยงเบนมาตรฐาน	4.28 ± 2.42	
ค่ามัธยฐาน (ต่ำสุด-สูงสุด)	4.67 (0.67-9.33)	

ตารางที่ 3 แสดงข้อมูลเกี่ยวกับการผ่าตัดผู้ป่วย

	จำนวน	ร้อยละ
ชนิดการผ่าตัดสมอง		
Frontal resection	21	42
Parietal resection	10	20
Occipital resection	3	6
Multilobar resection	11	22
Hemispherectomy	1	2
ไม่ได้ผ่าตัดกำจัดจุดกำเนิดชัก	4	8
การวางแผนอิเลคโทรดบนผิวสมอง		
มี	47	94
ไม่มี	3	6
ผลขันเนื้อทางจุลพยาธิวิทยา		
Malformation of cortical development ^a	30	60
Tumors ^b	6	12
Gliosis	8	16
Acquired insults ^c	2	4
ไม่มีผลขันเนื้อ	4	8
ขอบเขตการตัดจุดกำเนิดชัก		
ตัดออกหมด	24	48
ตัดออกไม่หมด	22	44
ไม่ได้ตัดจุดกำเนิดชัก	4	8

^a แบ่งเป็น focal cortical dysplasia จำนวน 21 ราย, neuronal heterotopia จำนวน 5 ราย และ microdysgenesis จำนวน 4 ราย

^b แบ่งเป็น DNET จำนวน 2 ราย, central neurocytoma จำนวน 1 ราย, pilocytic astrocytoma จำนวน 2 ราย และ oligodendrogloma จำนวน 1 ราย

^c แบ่งเป็น พบรอยอักเสบลักษณะของ Rasmussen's encephalitis จำนวน 1 ราย และลักษณะสมองขาดเลือด จำนวน 1 ราย

พยากรณ์โรคกับผลลัพธ์หลังการผ่าตัดผู้ป่วยโรคลมชัก พบร่วมกับการชักหลังผ่าตัดระยะแรกไม่มีความสัมพันธ์ที่มีนัยสำคัญทางสถิติกับผลลัพธ์หลังการผ่าตัดผู้ป่วยโรคลมชัก และพบว่าปัจจัยที่ใช้พยากรณ์โรคที่มีความสัมพันธ์กับผลลัพธ์หลังการผ่าตัดอย่างมีนัยสำคัญทางสถิติ ได้แก่ การมีอาการชักแบบเกร็งกระตุกทั่วตัว ($p=0.039$) โดยผู้ป่วยที่มีภาวะชักเกร็งกระตุกทั่วตัวมีโอกาสที่จะมีผลลัพธ์หลังผ่าตัดที่ไม่ดี 0.171 เท่าเมื่อเทียบกับผู้ป่วยที่ไม่ได้รับการตัดจุดกำเนิดชักออกหมด ดังตารางที่ 7

ตารางที่ 4 แสดงข้อมูลเกี่ยวกับผลการผ่าตัดผู้ป่วย

	จำนวน	ร้อยละ
การชักหลังผ่าตัดระยะแรก (early postoperative seizure)		
มี	13	26
ไม่มี	37	74
ความถี่การชักหลังผ่าตัด		
คงเดิม	2	4
มากขึ้น	1	2
ลดลง	47	94
ระยะเวลาปลดการชัก (P)		
ค่าเฉลี่ย土ส่วนเบี่ยงเบนมาตรฐาน	1.59 ± 2.27	
ค่ามัธยฐาน (ต่ำสุด-สูงสุด)	0.42 (0-9.33)	
ปลดอาการชัก (Seizure remission)		
ปลดอาการชัก	18	36
ไม่ปลดอาการชัก	32	64
หายจากการชัก (Seizure free)		
หายจากการชัก	10	20
ไม่หายจากการชัก	40	80
จำนวนยกเว้นชักหลังผ่าตัด		
ชนิดเดียว	1	2
หลาຍชนิด ปริมาณเท่าเดิม	15	30
หลาຍชนิดและเพิ่มปริมาณ	2	4
หลาຍชนิดและลดปริมาณ	32	64

เทียบกับผู้ป่วยที่ไม่มีภาวะชักเกร็งกระตุกทั่วตัว และขอบเขตการตัดจุดกำเนิดชัก ($p=0.012$) โดยผู้ป่วยที่ได้รับการตัดจุดกำเนิดชักออกหมดมีโอกาสที่จะมีผลลัพธ์หลังผ่าตัดที่ไม่ดี 0.171 เท่าเมื่อเทียบกับผู้ป่วยที่ไม่ได้รับการตัดจุดกำเนิดชักออกหมด ดังตารางที่ 7

บทวิจารณ์ (Discussion)

การศึกษาวิจัยครั้งนี้เป็นการหาผลลัพธ์ระยะยาว และปัจจัยที่ใช้พยากรณ์โรคหลังการผ่าตัดผู้ป่วยโรคลมชักที่เกิดจากความผิดปกติของคลื่นไฟฟ้าสมองส่วนนอก เทมโพรัล ที่ไม่ตอบสนองต่อการรักษาด้วยยา โดยดูในเบื้องต้นการหายชักหลังได้รับการผ่าตัด ซึ่งพบว่าการมีภาวะชักเกร็งกระตุกทั่วตัว และการตัดจุดกำเนิดชัก

ตารางที่ 5 แสดงอัตราการหายชักหลังได้รับการผ่าตัด

ระยะเวลาติดตามผล	ระดับ	ระดับ	ระดับ	ระดับ	ระดับ	ไม่ได้
	Engel 1a	Engel 1	Engel 2	Engel 3	Engel 4	ติดตามผล
	จำนวน	จำนวน	จำนวน	จำนวน	จำนวน	จำนวน
	(ร้อยละ)	(ร้อยละ)	(ร้อยละ)	(ร้อยละ)	(ร้อยละ)	(ร้อยละ)
ที่ระยะเวลา 1 ปี	12 (24)	28 (64)	9 (18)	6 (12)	4 (8)	3* (6)
ที่ระยะเวลา 2 ปี	9 (18)	24 (48)	7 (14)	3 (6)	3 (6)	13 (26)
ที่ระยะเวลา 3 ปี	8 (16)	19 (38)	5 (10)	2 (4)	7 (14)	17 (34)
ที่ระยะเวลา 5 ปี	7 (14)	16 (32)	3 (6)	1 (2)	5 (10)	25 (50)
ที่การติดตามครั้งสุดท้าย [#]	11 (22)	25 (50)	10 (20)	7 (14)	8 (16)	-

[#]ค่ามัธยฐานของระยะเวลาติดตามผลการรักษา 4.67 (0.67–9.33) ปี

*ผู้ป่วยจำนวน 3 ราย อัตราการหายชักระดับ Engel 3 ที่ระยะเวลา 8 เดือน, ระดับ Engel 4 ที่ระยะเวลา 9 เดือน และระดับ Engel 2 ที่ระยะเวลา 11 เดือน

ออกไม่หมด เป็นปัจจัยอิสระที่สำคัญที่ทำให้การพยากรณ์โรคหลังผ่าตัดไม่ดี ซึ่งสอดคล้องกับหลายการศึกษาที่ผ่านมา (การศึกษาในปี ค.ศ. 2008 โดย Elsharkawy และคณะ¹⁴ และการศึกษาในปี ค.ศ. 2013 โดย Siew JS และคณะ¹⁶)

เมื่อเปรียบเทียบผลการศึกษาที่ผ่านมาดีดี^{14,15, 16,17,18} ในด้านของปัจจัยอื่นๆ ที่เกี่ยวข้องกับผลลัพธ์หลังการผ่าตัด พบร่วม ปัจจัยก่อนการผ่าตัด ได้แก่ อายุ, ความถี่ในการชัก, ระยะเวลาเป็นโรคลมชักก่อนผ่าตัด, อายุที่เริ่มเป็นโรคลมชัก, ประวัติการผ่าตัดโรคลมชักในอดีต, ประวัติการได้รับบาดเจ็บทางสมอง, ประวัติใช้ชักในอดีต และการพบรหหรือไม่พบรอยโรคที่ผิดปกติจากการตรวจภาพสมองด้วยคลื่นแม่เหล็กไฟฟ้า รวมทั้งปัจจัยระหว่างผ่าตัดและหลังผ่าตัด ได้แก่ ผลลัพธ์เนื้อทางจุลพยาธิวิทยาและการมีหรือไม่มีภาวะชักหลังผ่าตัดระยะแรก ไม่มีความสัมพันธ์อย่างมีนัยสำคัญทางสถิติกับอัตราการหายชักหลังการผ่าตัด

จากการศึกษาเราพบว่าการมีการชักหลังผ่าตัดระยะแรก ไม่ได้เป็นตัวพยากรณ์ผลลัพธ์หลังผ่าตัดระยะยาวหลังการผ่าตัด และอาจไม่ได้เป็นปัจจัยที่บ่งบอกถึงการที่ตัดจุดกำเนิดชักออกไม่หมด ในระยะแรกหลังการผ่าตัด ผู้ป่วยมีอัตราการหายชักที่ไม่ดี แต่เมื่อติดตามระยะยาวนานขึ้นพบว่ามีอัตราการหายชักที่ดีขึ้นได้ อาจเป็นไป

ตารางที่ 6 แสดงการวิเคราะห์ตัวแปรเดี่ยว (univariate analysis)

ปัจจัย	p-value
อายุ (ปี)	0.242 [#]
ความถี่ในการชัก	0.066 [†]
ระยะเวลาเป็นโรคลมชักก่อนผ่าตัด	0.986 [#]
อายุที่เริ่มเป็นโรคลมชัก	0.394 [#]
ประวัติการผ่าตัดโรคลมชักในอดีต	0.747
ประวัติได้รับบาดเจ็บทางสมอง	1.000 [†]
ประวัติใช้ชักในอดีต	1.000 [†]
การมีภาวะชักเกร็งกระดูกทั่วตัว (GTC)	0.018*
ลักษณะภาพคลื่นแม่เหล็กไฟฟ้าสมอง	1.000
ผลลัพธ์เนื้อทางจุลพยาธิวิทยา	0.734 [†]
การชักหลังผ่าตัดระยะแรก	0.024*
ขอบเขตการตัดจุดกำเนิดชัก	0.005*

ใช้สถิติ Chi-Square test

[†] ใช้สถิติ Fisher's exact test

[#] ใช้สถิติ Independent T test

* มีนัยสำคัญทางสถิติ

ได้ว่าการชักหลังผ่าตัดระยะแรกอาจเกิดจากกระดับยากันชักที่ไม่เพียงพอ ภาวะเครียดอ่อนล้า การมีภาวะไข้ หรือความผิดปกติของระดับเกลือแร่ในร่างกายของผู้ป่วยหลังได้รับการผ่าตัด ซึ่งจำเป็นต้องมีการศึกษาเพิ่มเติมต่อไป ในส่วนของลักษณะภาพคลื่นแม่เหล็กไฟฟ้าสมองด้วยคลื่นแม่เหล็ก

ตารางที่ 7 แสดงการวิเคราะห์การถดถอยพหุโลจิสติกส์ (multivariate analysis)

ปัจจัยที่ใช้พยากรณ์โรค	ผลสัมฤทธิ์หลัง การผ่าตัดที่ดี	ผลสัมฤทธิ์หลัง การผ่าตัดที่ไม่ดี	Adjusted Odds ratio	p-value (95% CI)
	จำนวน (ร้อยละ)	จำนวน (ร้อยละ)		
การมีภาวะซักเกริงกระดูกทั่วตัว (GTC)				
มี	5 (20)	13 (52)	4.791 (1.085-20.518)	0.039*
ไม่มี	20 (80)	12 (48)		
ประวัติการผ่าตัดโกรคลมซักในอดีต				
มี	6 (24)	7 (28)	0.880 (0.187-4.134)	0.871
ไม่มี	19 (76)	18 (72)		
การซักหลังผ่าตัดระยะแรก				
มี	3 (12)	10 (40)	3.391 (0.654-17.566)	0.146
ไม่มี	22 (88)	15 (60)		
ขอบเขตการตัดจุดกำเนิดซัก				
ตัดออกหมด	17 (68)	7 (28)	0.171 (0.044-0.675)	0.012*
ตัดออกไม่หมด	8 (32)	18 (72)		

*มีนัยสำคัญทางสถิติ

ไฟฟ้าก่อนการผ่าตัดนั้น ถึงแม้จะไม่พบรอยโรคที่ซัดเจน แต่ก็สามารถมีผลสัมฤทธิ์หลังการผ่าตัดที่ดีได้ ถ้าสามารถหาจุดกำเนิดซักและตัดออกได้มากพอ ส่วนการได้รับการผ่าตัดโกรคลมซักข้างนั้นสามารถทำให้อัตราการหายซักดีขึ้นกว่าตอนก่อนเข้ารับการผ่าตัดข้าง แต่ไม่ได้เป็นปัจจัยที่บ่งบอกว่าจะสามารถทำให้ผลสัมฤทธิ์หลังการผ่าตัดดียิ่งขึ้น อาจเป็นไปได้ว่าผู้ป่วยกลุ่มนี้มีจุดกำเนิดซักที่เกิดขึ้นใหม่หลังการผ่าตัดครั้งแรก สำหรับการลดยาแก้ไข้หลังผ่าตัดจะมีผลต่อผลสัมฤทธิ์หลังการผ่าตัดหรือไม่นั้นมีการศึกษาที่ผ่านมาจำนวนน้อย และทางผู้วิจัยเห็นว่าควรมีการศึกษาเพิ่มเติมเกี่ยวกับเรื่องนี้

จากการศึกษาปัจจัยทั้งหมดที่กล่าวมาวิเคราะห์ได้ว่า การตัดจุดกำเนิดซักออกได้หมดมีความสำคัญเป็นอย่างยิ่งต่อผลสัมฤทธิ์หลังการผ่าตัดในแง่อัตราการหายซักโดยสาเหตุสำคัญที่ทำให้ไม่สามารถตัดจุดกำเนิดซักออกได้หมดนั้น คือ การที่จุดกำเนิดซักตรงกับตำแหน่งของผิวสมองที่ทำหน้าที่สำคัญในด้านการควบคุมการเคลื่อนไหวและการใช้ภาษา ดังนั้นสิ่งที่มีความจำเป็นเป็นอย่างยิ่งใน

การวางแผนการผ่าตัดรักษาผู้ป่วยโกรคลมซัก คือ การหาตำแหน่งสมองส่วนที่ทำหน้าที่สำคัญให้ได้ เพื่อให้สามารถตัดจุดกำเนิดซักออกได้มากที่สุด และไม่ก่อให้เกิดความผิดปกติของระบบประสาทหลังการผ่าตัด ยังจะส่งผลให้ผลสัมฤทธิ์หลังการผ่าตัดดีเลิศมากที่สุด ทั้งในด้านอัตราการหายซัก และคุณภาพชีวิตของผู้ป่วยที่เข้ารับการผ่าตัด โดยประสาทศัลยแพทย์ผู้ทำการผ่าตัดต้องสามารถเลือกวิธีการตรวจหาตำแหน่งสมองส่วนที่ทำหน้าที่สำคัญให้เหมาะสมกับผู้ป่วยให้ได้ เช่น การผ่าตัดเพื่อวางแผน อิเลคโทรดใต้เยื่อหุ้มสมองเพื่อประโยชน์ทั้งในด้านการหาจุดกำเนิดซัก และการหาตำแหน่งสมองส่วนที่ทำหน้าที่สำคัญ

ในส่วนของผลสัมฤทธิ์หลังการผ่าตัดผู้ป่วยโกรคลมซักที่เกิดจากความผิดปกติของคลื่นไฟฟ้าสมองส่วนนอกเทมโพรัลที่ไม่ตอบสนองต่อการรักษาด้วยยาต้าน จากการทบทวนวรรณกรรมที่เกี่ยวข้องพบว่า อัตราการหายซักระดับ Engel I จะอยู่ในช่วงร้อยละ 27 ถึงร้อยละ 76^{14,15,19-27} และอัตราการหายซักจะลดลงเมื่อมีการ

ติดตามผู้ป่วยระยะเวลาระยะนานมากขึ้น มีการศึกษาในปีค.ศ. 2012 โดย McIntosh และคณะ 28 ชีวี เป็นการศึกษาในผู้ป่วยจำนวน 81 คน แบบติดตามไปข้างหน้าพบว่า เมื่อติดตามผู้ป่วยหลังได้รับการผ่าตัดที่ระยะเวลา 1 ปี และ 5 ปี โอกาสที่ผู้ป่วยจะปราศจากการชักมีจำนวนร้อยละ 23.5 และ ร้อยละ 14.7 ตามลำดับ เมื่อเปรียบเทียบกับการศึกษาในครั้งนี้พบว่า อัตราการหายชักระดับ Engel I (ปราศจากการชัก) มีจำนวนร้อยละ 50 โดยมีค่ามอร์ยูานของระยะเวลาติดตามผลการรักษา 4.67 ปี ซึ่งเป็นการวัดผลลัมกุธีหลังการผ่าตัดระยะยาว ซึ่งจะเห็นได้ว่าผลการศึกษาจะแตกต่างกัน เนื่องจากผู้ป่วยโรคลมชักกลุ่มนี้มีสาเหตุเกิดจากพยาธิสภาพที่หลักหลาย จุดกำเนิดชักก็สามารถเกิดได้จากหล่ายส่วนของสมองทั้งสองข้าง และตำแหน่งการผ่าตัดก็ไม่ได้เป็นแบบแผนเดียวกันในผู้ป่วยแต่ละราย อีกทั้งระยะเวลาที่ติดตามผลการรักษา ก็แตกต่างกันด้วย

สรุปการวิจัย (Conclusion)

ผลลัมกุธีหลังการผ่าตัดผู้ป่วยโรคลมชัก ที่เกิดจากความผิดปกติของคลื่นไฟฟ้าสมองส่วนนอกเทมโพรัลที่ไม่ตอบสนองต่อการรักษาด้วยยา มีความหลักหลาย ซึ่งการวัดผลและติดตามผู้ป่วยเป็นระยะเวลาระยะพอดีจะสามารถออกถึงผลลัมกุธีหลังการผ่าตัด และปัจจัยที่ใช้พยากรณ์โรคลมชักหลังผ่าตัดได้ดีที่สุด เนื่องจากผู้ป่วยโรคลมชักกลุ่มนี้มีสาเหตุเกิดจากพยาธิสภาพที่หลักหลาย และมีปัจจัยหล่ายปัจจัยที่เกี่ยวข้อง อีกทั้งตำแหน่งการผ่าตัดก็ไม่ได้เป็นแบบแผนเดียวกันในผู้ป่วยแต่ละราย แต่ขึ้นอยู่กับตำแหน่งจุดกำเนิดชักที่ตรวจพบและตำแหน่งสมองส่วนที่ทำหน้าที่สำคัญเป็นสำคัญ จึงมีความจำเป็นอย่างยิ่งที่ต้องหารือและเทคโนโลยีมาประเมินปัจจัยทั้งสองนี้ให้ได้ เพื่อให้การผ่าตัดโรคลมชักมีประสิทธิภาพในการรักษาและปลอดภัยมากที่สุด และจากการที่พบว่าการมีภาวะชักเกร็งกระตุกทั่วตัวเป็นปัจจัยอิสระที่ใช้ในการพยากรณ์โรคลมชักหลังการผ่าตัดได้ จึงมีความจำเป็นที่ต้องมีการประเมินภาวะนี้ก่อนการผ่าตัดด้วย

ปัจจัยเหล่านี้มีประโยชน์เป็นอย่างยิ่งในการให้ข้อมูลกับผู้ป่วยและญาติก่อนพิจารณาตัดสินใจเข้ารับการผ่าตัดโรคลมชัก ผลลัมกุธีหลังการผ่าตัดด้านอัตราการหายชักที่ดีเลิศย่อมมาจากการตรวจพบจุดกำเนิดชักและสามารถตัดออกได้หมด การดูแลรักษาโดยสาขาวิชาชีพจึงมีความจำเป็นเป็นอย่างยิ่ง เพื่อให้ได้ผลการรักษาที่ดีที่สุดต่อผู้ป่วยโรคลมชัก

เอกสารอ้างอิง (References)

1. Annegers JF. The Epidemiology of epilepsy. In: Wyllie E, editor. The Treatment of Epilepsy Principles & Practice. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 131-8.
2. Hauser WA. Incidence and prevalence. In: Engel J Jr, editor. Epilepsy: A Comprehensive Textbook. Philadelphia: Raven Publishers; 1997. p. 47-57.
3. Tellez-Zenteno JF, Pondal-Sordo M, Matijevic S, Wiebe S. National and regional prevalence of self-reported epilepsy in Canada. Epilepsia 2004 Dec; 45(12):1623-9.
4. Hauser WA. Epidemiology of intractable epilepsy. In: Luders H, editor. Epilepsy Surgery. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 55-61.
5. Jallon P. Epidemiology of drug-resistant epilepsies. Rev Neurol. (Paris) 2004 Jun;160:522-30.
6. Chinvarun Y. Thailand comprehensive epilepsy program; 2009.
7. French JA, Kanner AM, Bautista J, Abou-Khalil B, Browne T, Harden CL, et al. Review efficacy and tolerability of the new antiepileptic drugs II treatment of refractory epilepsy : report of the Therapeutics and Technology Assessment Subcommittee and Quality Standards Subcommittee of the American Academy of Neurology, American Epilepsy Society. Neurology 2004;62(8):1261-73.
8. Engel J, Ness PCV, Rasmussen TB. Outcome with respect to epileptic seizures. In: Engel J, editor. Surgical Treatment of the Epilepsies, 2nd ed. New York:

Raven Press; 1993. p. 609–21.

9. Spencer SS, Berg AT, Vickrey BG, Sperling MR, Bazil CW, Shinnar S, et al. Initial outcome in the multicenter study of epilepsy surgery. *Neurology* 2003;61: 1680–85.
10. Behrens E, Schramm J, Zentner J, Konig R. Surgical and neurological complications in a series of 708 epilepsy surgery procedures. *J Neurosurg* 1997;41: 1–9.
11. Spencer S, Huh L. Outcomes of epilepsy surgery in adults and children. *Lancet Neurol* 2008;7:525–37.
12. Téllez-Zenteno JF, Dhar R, Wiebe S. Long-term seizure outcomes following epilepsy surgery: a systematic review and meta-analysis. *Brain* 2005;128: 1188–98.
13. Wiebe S, Blume WT, Girvin JP, Eliasziw M. A randomized, controlled trial of surgery for temporal-lobe epilepsy. *N Engl J Med* 2001;345:311–18.
14. Elsharkawy AE, Alaa E, Pannek H, Schulz R, Hoppe M, Pahs G, et al. Outcome of extratemporal epilepsy surgery experience of a single center. *J Neurosurg* 2008;63:516–26.
15. Elsharkawy AE, Behne F, Oppel F, Pannek H, Schulz R, Hoppe M, et al. Long-term outcome of extratemporal epilepsy surgery among 154 adult patients. *J Neurosurg* 2008;108:676–86.
16. Siew JS, Lara E. Surgical outcomes in Patients with extratemporal epilepsy and subtle or normal magnetic resonance imaging findings. *J Neurosurg* 2013; 73:68–77.
17. Dario J, Jonathan D, Peter P. Seizure outcomes after resective surgery for extratemporal lobe epilepsy in pediatric patients. *J Neurosurg* 2013;12:126–33.
18. Noe K, Sulc V, Wang-Kisiel L, Wirrell E, Van Gompel JJ, Wetjen N, et al. Long-term outcomes after nonlesional extratemporal epilepsy surgery. *JAMA Neurol* 2013;70(8):1003–8.
19. Nobili L, Francione S, Mai R, Cardinale F, Castana L, Tassi L, et al. Surgical treatment of drug resistant nocturnal frontal lobe epilepsy. *Brain* 2007 Feb;130: 561–73.
20. Boesebeck F, Janszky J, Kellinghaus C, May T, Ebner A. Presurgical seizure frequency and tumoral etiology predict the outcome after extratemporal epilepsy surgery. *J Neurol* 2007 Aug;254(8):996–9.
21. Centeno RS, Yacubian EM, Sakamoto AC, Ferraz AFP, Junior HC, Cavalheiro S. Pre-surgical evaluation and surgical treatment in children with extratemporal epilepsy. *Child's Nervous System [Review]* 2006 Aug; 22(8):945–59.
22. Yun CH, Lee SK, Lee SY, Kim KK, Jeong SW, Chung CK. Prognostic factors in neocortical epilepsy surgery: multivariate analysis. *Epilepsia* 2006 Mar; 47(3):574–9.
23. Tanriverdi T, Olivier NP, Olivier A. Quality of life after extratemporal epilepsy surgery: A prospective clinical study. *Clin Neurol Neurosurg* 2008 Jan;110(1): 30–7.
24. Jeha LE, Najm I, Bingaman W, Dinner D, Widdess-Walsh P, Luders H. Surgical outcome and prognostic factors of frontal lobe epilepsy surgery. *Brain* 2007 Feb;130(2):574–84.
25. Lee SK, Lee SY, Kim DW, Lee DS, Chung CK. Occipital lobe epilepsy: clinical characteristics, surgical outcome and role of diagnostic modalities. *Epilepsia* 2005;46(5):688–95.
26. Kim CH, Chung CK, Lee SK, Lee YK, Chi JG. Parietal lobe epilepsy: surgical treatment and outcome. *Stereotact Funct Neurosurg* 2004; 82(4):175–85.
27. Dalmagro CL, Bianchin MM, Velasco TR, Alexandre V Jr, Walz R, Terra-Bustamante VC, et al. Clinical features of patients with posterior cortex epilepsies and predictors of surgical outcome. *Epilepsia* 2005 Sep; 46(9):1442–9.
28. McIntosh AM, Averill CA, Kalnins RM, Mitchell L, Fabinyi GCA, Jackson GD, et al. Long-term seizure outcome and risk factors for recurrence after extratemporal epilepsy surgery. *Epilepsia* 2012; 53(6):970–78.

Malignant Middle Cerebral Artery (MCA) Infarction : How to Manage Now ?

Sanchai Nakaphan, MD.

Department of Neurosurgery

Chumphon Ket Udomsakdi Province Hospital

Abstract

Background: Malignant middle cerebral artery (MCA) infarction is a devastating clinical entity affecting about 10% of stroke patients. Decompressive craniectomy has been found to reduce mortality rates and improve outcome in patients. Key factors associated with favorable outcome include younger age and early surgical treatment. There is ongoing debate as to whether surgery should be routinely performed, considering the very high rates of disability and functional dependence in elderly survivors. Further data on what is the best management in older age, how to provide the best comprehensive neurological and medical care, and how to inform families facing complex decisions on surgical intervention in deteriorating patients have been still required.

Methods: A retrospective case review study was conducted to compare patients treated with medical therapy and decompressive surgery for malignant MCA infarction in Chumphon Ket Udomsakdi Province Hospital over a period of 3 years (from January 2012 and September 2014). Outcome was assessed in terms of mortality rate at 30 days, Glasgow Outcome Score (GOS) on discharge, and modified Rankin scale (mRS) at 6 months.

Results: No significant difference was seen between patients treated with medical therapy and decompressive surgery in mortality rate reduction, GOS at discharge, and mRS at 6 months. Mortality rate of medical therapy was 35.7% compared to 30.7% in patients treated with surgery. Good functional outcome based on mRS was seen in 60.8% of patients receiving medical treatment, comparing to 46.2% of patients treated with surgery. Even the results were not met significantly association by statistic calculation, it seem that patients with age > 50 years derived good outcome from medical treatment and the patients with age ≤ 50 years derived better outcome from surgical treatment. Factors associated with good outcome in medical therapy included pre-treated CT midline shift less than 10 mm ($P < 0.05$) and GCS of 10–13 ($P < 0.05$). Dominant hemisphere involvement and hemorrhagic transformation were not significantly associated with functional outcome.

Conclusion: Malignant MCA infarction is a critical condition that warrant immediate, specialized neurointensive care and often neurosurgical intervention. Early medical therapy should be considered in patients who continue to deteriorate neurologically. Elderly patients may benefit greatly from such an approach, and although disabled, they may be functionally independent. Age is an important factor to consider in patient selection for surgery. Appropriate patients are relatively young, in the first five decades of life.

Background

Middle cerebral artery (MCA) infarction is a clinical entity affecting up to 10% of all patients diagnosed with ischemic stroke. It is defined as an infarction involving an area encompassing at least two thirds of that supplied by the MCA.¹ The development of a space-occupying hemispheric infarction occurs in a subset of patients with ischemic stroke. Massive brain edema and herniation, a condition known as malignant MCA infarction. Severe swelling increases intracranial pressure (ICP) and leads to progressive brainstem dysfunction. It is a life-threatening condition with a high mortality rate. Intensive medical therapy have so far been ineffective, with reported mortality rates being as high as 80% despite optimum medical management.^{2,5} A space-occupying mass effect develops rapidly and predictably over the initial 5 days after presentation. The initial presenting features include symptoms and signs of MCA occlusion, such as hemiparesis, hemiplegia, gaze preferences, and altered consciousness.³ Decompressive craniectomy with duroplasty has been proposed as a treatment option for large hemispheric infarctions with cerebral edema.⁴ Based on the rationale of treatment that the temporary removal of a part of the skull would create space to allow swollen brain (edematous tissue) to expand outside the cranium, thereby allowing for normalization of intracranial pressure, preventing brain tissue herniation, and preserving cerebral blood flow to prevent secondary brain damage.⁵ The procedure can be performed in every neurosurgical center. However, in the past decompressive craniectomy for malignant middle MCA infarction has long been controversial, various nonrandomized trials and reports have been published. Previous retrospective and uncontrolled case series have suggested that decompressive hemi-

craniectomy can significantly reduce mortality to 20-30% compared to conservative treatment. But various unresolved issues remained in these early trials, which included timing of surgery, age limit, the limits of acceptable outcome and patient selection. This evidence has now been confirmed by the data of prospective randomised studies. Results from three European randomized controlled trials for decompressive craniectomy in malignant MCA territory infarction, the DECI-MAL⁶, HAMLET⁷ and DESTINY⁸ trials, published in 2007, demonstrated a significant reduction in mortality rates and improvement in functional outcome in younger patients early treated with decompressive craniectomy as compared to medical therapy. Key factors associated with favorable outcome include younger age and early surgical treatment. After the publication of these three trials, the utilization of hemicraniectomy for acute ischemic stroke in the United States has increased significantly especially in urban teaching hospitals from 0.05% of stroke discharges in 2001 to 0.30% of stroke discharges in 2009.⁹ However, there is ongoing debate to whether surgery should be routinely performed, considering the very high rates of disability and functional dependence in survivors. The meta-analysis of the three trials suggested that the treatment significantly reduces the death rate but also increases the rate of severe disability and no evidence that hemicraniectomy was more beneficial than best medical treatment on the basis of the primary outcome.¹⁰ Presently, these randomised-controlled trials were difficult to conduct, because of ethical considerations due to high mortality in control groups. However, there are still uncertainties surrounding the optimal management of patients with malignant MCA infarction. Guidelines are needed on how to manage, how to provide the best comprehensive neurological

and medical care, and how to best inform families facing complex decisions on surgical intervention in deteriorating patients. This was only a non-randomised-controlled study which was conducted to compare the difference in outcome in terms of mortality rate at 30 days and functional outcome at discharge and 6 months following decompressive craniectomy for treatment of malignant MCA infarction and medical treatment, as well as to study the association of factors influencing outcome in both groups.

Methods

A retrospective case review of patients diagnosed with malignant MCA territory infarction admitted to the neurosurgery department of Chumphon Khet Udomsakdi Province Hospital between January 2012 and September 2014 was performed. Data were collected from patients' medical records, surgical records, and radiological images. A total of 41 patients between the ages of 33 and 87 years were included in this study. Malignant MCA territory infarction was defined as an infarction of at least two-thirds of MCA territory with evidence of space-occupying edema and mass effect on non-contrasted computed tomographic (CT) imaging of the brain. Pretreatment clinical evaluation was based on the Glasgow Coma Scale (GCS). All patients had at least one scan done within 24 h of stroke onset. A repeat scan was done within the following 24–72 h, or the patients had early clinical changing.

Surgical treatment consisted of standardized decompressive craniectomy with fascio-duroplasty. To be successful, decompression must be extensive, targeting a bone flap measuring 14 cm from front to back, and extending 1 to 2 cm lateral to the midline sagittal suture to the floor of the middle cranial fossa at the level of the coronal suture. An augmentation duraplasty is

mandatory.¹⁰

Conservative treatment: So far, no mode of conservative treatment in malignant MCA infarction has been proven to be effective or superior to another. As a result, treatment options may vary between institutions.

1. **Osmotherapy:** osmotherapy may be started at any time point after randomisation. The use of mannitol (20%, 100 ml or 0.5–1.0 g/kg every 4–6 h, maximum 2.5 g/kg/day), glycerol (10%, 250 ml, three to four times per day), Dosage depends on serum osmolality, which should not much more than 320 mOsm or urine sp. > 1.040.

2. **Intubation and mechanical ventilation:** patients should be intubated at a GCS score <8, when there are any signs of respiratory insufficiency (arterial $pO_2 < 60$ mmHg and/or $pCO_2 > 48$ mmHg), reduced swallowing or coughing reflexes, or when the airway is compromised.

3. **Hyperventilation:** the use of hyperventilation is discouraged in the early phase of treatment. In the case of further neurological deterioration and/or uncontrolled increase in ICP, hyperventilation may be started as an ultima ratio. It is advised to monitor venous oxygenation with jugular bulb oxymetry and to maintain saturation above 50%. Arterial pCO_2 may be reduced to 28–32 mmHg.

4. **Blood pressure control:** blood pressure is controlled according to the latest recommendations of the treatment of acute ischaemic stroke. An exception is made in patients after decompressive surgery. Blood pressure during the first 8 h after surgery is kept at 140–160 mmHg to avoid severe bleedings.

5. **Positioning:** flat head positioning is recommended. In patients at risk for aspiration or pneumonia, or after intubation, elevation of the head of 15–

30° is recommended.

6. Body core temperature: normothermia is recommended. Elevated body temperature is treated as soon as it exceeds 37-5°C. (Use antipyretics, external cooling)

7. Blood glucose level: blood glucose level should not exceed 140 mg/dl (8 mmol/l), with a target level of 80-110 mg/dl using insulin if necessary. Hypoglycaemia is treated with infusion of 10% or 20% glucose solution.

Those receiving medical therapy included in the previous conservative treatment guideline without any surgery. After patients diagnosed with malignant MCA territory infarction was consulted from medical staff, all patients would be transferred from medical ward to the neurosurgery intensive care unit. Serial computed tomography with measurement of midline and septum pellucidum shift. Time course and outcome were analyzed with regard to the clinical findings on admission and at follow-up. Outcome measured was assessed based on mortality rate at 30 days, Glasgow Outcome Score (GOS) on discharge, and the functional status of surviving patients was assessed using modified Rankin scale (mRS) at 6 months.

Chi-square test were used to determine significant differences in outcome based on mortality rate at 30 days, GOS at discharge, and mRS at 6 months between patients treated with surgery and medical treatment, as well as to determine significant difference in factors influencing outcome in patients treated with surgery and medical treatment group. The GOS was dichotomized as unfavorable outcome (GOS 4 and 5) and favorable outcome (GOS ≤3), and the mRS as good outcome (mRS ≤3) and poor outcome (mRS 4-6). Patients with a GCS score of 6 and below or those with evidence of absent brain stem reflexes were ex-

cluded from this study.

Variables with P values less than 0.05 and clinically relevant variables ($P > 0.05$) were subjected to multivariable logistic regression analysis to determine independent associative factors for long term outcome based on mRS at 6 months.

Result

A total of 41 patients with malignant MCA territory infarction during the study period were included in this study. The age range was between 33 and 87 years. Non-dominant hemisphere was involved in 17 patients (41.4%), while dominant hemisphere involvement was seen in 24 patients (58.6%). A total of 13 patients (32%) which mean ($\pm SD$) age was 54.5 (± 14.4) years were treated with surgery. While 28 patients (68%) which mean ($\pm SD$) age was 64.8 (± 13.1) years were managed with medical therapy. Majority of the patients (62%) had a GCS score of between 6 and 9 before surgery. Most time between stroke onset and surgery was more than 24 h. No significant difference was seen between patients treated with decompressive surgery and those treated with medical therapy in terms of mortality rate at 30 days, GOS at discharge, and mRS at 6 months. [Table 2] Patients treated with surgery had a mortality rate of 30.7%, as compared to 35.7% in patients treated with medical therapy ($P > 0.05$). Favorable outcome based on GOS at discharge was noted in 57.2% of the patients treated with medical treatment, as compared to 38.5% of the patients treated with surgery but they were not significantly associated ($P > 0.05$). Good outcome based on dichotomized mRS (mRS <4) was seen in 60.8% of patients receiving medical treatment at 6 months, respectively comparing to 46.2% of patients treated with surgery at 6 months were not significantly

Table 1 Comparison of outcome in patients with malignant MCA territory infarction treated with surgery and medical therapy

Outcome measure	Surgery (n=13) N (%)	Medical (n=28) N (%)	P value
Mortality rate at 30 days			
Alive	9 (69.3%)	18 (64.3%)	> 0.05
Death	4 (30.7%)	10 (35.7%)	$\chi^2 = 0.09$
GOS at discharge			
Unfavorable	8 (61.5%)	12 (42.8%)	> 0.05
Favorable	5 (38.5%)	16 (57.2%)	$\chi^2 = 1.21$
mRS at 6 months			
Poor outcome	7 (53.8%)	11 (39.2%)	> 0.05
Good outcome	6 (46.2%)	17 (60.8%)	$\chi^2 = 0.26$

χ^2 =Chi-square value. GOS: Glasgow outcome score (dichotomized), mRS: Modified rankin scale (dichotomized)

Table 2 Factors influencing outcome at 6 months in patients treated with surgery

Factors	N = 13	Good outcome (%)	Poor outcome (%) (mRS 4–5 or death)	P value
Age (mean) (yrs)				
≤ 50	6	4 (66%)	2 (34%)	> 0.05
> 50	7	2 (28%)	5 (72%)	$\chi^2 = 1.87$
Site of infarction				
Left	4	3 (75%)	1 (25%)	> 0.05
Right	9	4 (45%)	5 (55%)	$\chi^2 = 3.03$
Midline shift(mm)				
≤ 10	7	5 (71%)	2 (29%)	> 0.05
> 10	6	2 (33%)	4 (67%)	$\chi^2 = 1.32$
Pre-op GCS				
GCS 10–13	5	4 (80%)	1 (20%)	> 0.05
GCS 6–9	8	3 (37%)	5 (63%)	$\chi^2 = 2.21$
Surgery interval				
≤ 24 h	2	0	2 (100%)	> 0.05
> 24 h	11	7 (64%)	4 (36%)	$\chi^2 = 2.74$
Hemorrhagic transformation	1	0	1 (100%)	

associated ($P > 0.05$). In patients treated with surgery, no factors were associated significantly with good outcome at 6 months [Table 2] such as age, dominant

hemisphere involvement, midline shift, preoperative GCS, time interval to surgery and postoperative complication of hemorrhagic transformation ($P > 0.05$). In

Table 3 Factors influencing outcome at 6 months in patients treated with medical treatment

Factors	n = 28	Good outcome (%)	Poor outcome (%) (mRS 4–5 or death)	P value
Age (mean) (yrs)				
≤ 50	5	2 (40%)	3 (60%)	> 0.05
> 50	23	15 (65%)	8 (35%)	$\chi^2 = 1.08$
Site of infarction				
Left	20	11 (55%)	9 (45%)	0.95
Right	8	6 (75%)	2 (25%)	$\chi^2 = 0.003$
Midline shift (mm)				
≤ 10	17	16	1	< 0.001
> 10	11	1	10(D)	$\chi^2 = 19.63$
Pre-treated GCS				
GCS 10–13	17	16	1	< 0.001
GCS 6–9	11	1	10(D)	$\chi^2 = 19.63$
Hemorrhagic transformation	4	2	2	

n = the number of patients χ^2 = Chi-square value

patients treated with medical treatment, the factors significantly associated with good outcome at 6 months [Table 3] were midline shift less than 10 mm ($P < 0.001$) and preoperative GCS of 10–13 ($P < 0.001$). Age, dominant hemisphere involvement and postoperative complication of hemorrhagic transformation were not significantly associated with outcome at 6 months ($P > 0.05$).

Discussion

Decompressive craniectomy was not routinely performed in our hospital and many cases underwent medical treatment more often than surgical treatment. Decompressive craniectomy achieves good functional outcome in young patients with good preoperative GCS score and favorable radiological findings. Even the results did not reach significantly association by statistic calculation, it seem that patients with age > 50 years derived good outcome from medical treatment and the

patients with age ≤ 50 years derived better outcome from surgical treatment. Three of five poor outcome cases with age > 50 years died from acute myocardial infarction after surgery. Our study could not explain the beneficial role of decompressive craniectomy over the medical treatment in reducing mortality rate and improving functional outcome in patients with malignant MCA territory infarction like the most previous study. As seen on study, good result could be met when we selected appropriate patients to start early medical treatment. We found that medical treatment had been yet the treatment of choice for malignant MCA infarction. Decompressive hemicraniectomy in older patients was less often used and performed later. Because most of cases had multiple underlying diseases and caregiver refused surgical treatment. Reasons for later intervention may be the belief that older patients may less likely proceed to herniation due to more compensating intracranial space, i.e. lower average brain volumes and

greater CSF space. Conversely, younger patients who do not have suffered the effects of cerebral atrophy may deteriorate faster, and present with a lower GCS score, are not proper to use medical treatment. Naturally, the prognosis of complete middle cerebral artery territory stroke is very poor and the course of deterioration varies between 2 and 5 days. The cause of death is trans-tentorial herniation with subsequent brain death. Herniation occurs as an end point in 80% of untreated patients.¹¹ Clinical signs that signify deterioration in swollen supratentorial hemispheric ischemic stroke include new or further impairment of consciousness, cerebral ptosis, and changes in pupillary size.¹² Despite well-defined clinical and neuroimaging (CT scan) diagnostic criteria, malignant MCA infarction might be missed in the first day of stroke onset. Diagnosis and treatment had often been delayed until CT scan was repeated after clinical deterioration of the patients. Identification of patients at high risk for brain swelling should include clinical and neuroimaging data. CT scan should be daily repeated in the first few days in all clinically suspected large infarction patients. After diagnosis was confirmed, all cases should be early consulted to neurosurgeon for attention. Admission to a unit with neurological monitoring capabilities is needed. These patients are best admitted to intensive care or stroke units attended by skilled and experienced physicians. Medical treatments should be started instantly even clinical and CT finding had changed or not. The goal of hyperosmolar therapy is to increase the serum osmolarity to approximately 315–320 mOsm/L. Glycerol or mannitol is used routinely to reduce ICP. In more severe cases and when mannitol fails, diuretic may be administered. Hyperventilation also helps reduce ICP effectively for a short time only. Corresponding to this study, good outcome was met if we

started the medical treatment before midline shift more than 10 mm. on CT and GCS > 9. Pre-treated GCS score and midline shift on CT were found to be significantly associated with patient outcome at 6 months. And this factor may explain the comparable outcomes observed in the previous study. Patient's health status, co-morbidities, neurological condition on presentation and extent of infarction, social and employment situation, as well as patient's and family expectations should be taken into account in treatment decisions. Dominant hemisphere infarction was significantly associated with unfavorable outcome at 6 months follow-up in medical group. The patients and their caregivers need to be comprehensively informed about the long-term consequences of the acceptable degree of disability, the importance of aphasia and the possibility of worse prior to surgery.

Conclusion

Malignant MCA infarction is a critical condition that warrants immediate, specialized neurointensive care and often neurosurgical intervention. Despite high mortality and morbidity, decompressive craniectomy is a necessary option in many patients to prevent cerebral herniation for maximizing the potential of survival. Decompressive craniectomy should be considered in patients who continue to deteriorate neurologically. Selected patients may benefit greatly from such an approach, and although disabled, they may be functionally independent.¹² Thus, the indication for surgery is a great extent still dependent on the individual situation of the patient and the experience of the treating physicians. There is uncertainty about the efficacy of decompressive craniectomy in older patients. Age is an important factor to consider in patient selection for surgery. Peri-operative complication from cardiovas-

cular disease in older group must be concerned. Appropriate patients are relatively young, in the first five decades of life. Lethargy combined with midline shift on neuroimaging is an appropriate trigger to consider and discuss surgical intervention. Malignant MCA infarction, most of cases are old age patients and refused surgical treatment cases by caregiver. Medical treatment had been still proved as the treatment of choice. Good result could be met if proper medical treatment was started in early time. Factors that predicted outcome are total scores of baseline GCS at the time of treatment and significant edematous effect after infarction.

References

1. Hacke W, Schwab S, Horn M, Spranger M, De Georgia M, von Kummer R. Malignant middle cerebral artery territory infarction: Clinical course and prognostic signs. *Arch Neurol* 1996;53:309-15.
2. Berrouschat J, Sterker M, Bettin S, Koster J, Schneider D. Mortality of space-occupying(malignant) middle cerebral artery infarction under conservative intensive care. *Int Care Med* 1998;24:620-3.
3. Heinsius T, Bogousslavsky J, Van Melle G. Large infarcts in the middle cerebral artery territory: Etiology and outcome patterns. *Neurology* 1998;50: 341-50.
4. Hofmeijer J, Van der Worp HB, Kappelle LJ. Treatment of space occupying cerebral infarction. *Crit Care Med* 2003;31:617-25.
5. Wartenberg K E. Malignant middle cerebral artery infarction. *Curr Opin Crit Care* 2012;18:152-63.
6. Vahedi K, Vicaut E, Mateo J, Kurtz A, Orabi M, Guichard JP, et al. Sequentiali-design, multicenter, randomized, controlled trial of early decompressive craniectomy in malignant middle cerebral artery infarction (DECIMAL Trial). *Stroke* 2007;38:2506-17.
7. Hofmeijer J, Kappelle LJ, Algra A, Amelink GJ, van Gijn J, van der Worp HB; HAMLET investigators. Surgical decompression for space occupying cerebral infarction the Hemicraniectomy after middle cerebral arteri infarction with life-threatening edema trial (HAMLET) : A multicentre, open, randomised trial. *Lancet Neurol* 2009;8:326-33.
8. Juttler E, Schwab S, Schmiedek P, Unterberg A, Hennerici M, Woitzik J, et al. Decompressive surgery for the treatment of malignant infarction of the middle cerebral artery (DESTINY): A randomized controlled trial. *Stroke* 2007;38:2518-25.
9. Pratik Bhattacharya; Amit Kansara; Seemant Chaturvedi; William Coplin WAYNE STATE UNIVERSITY, Detroit, MI Pratik Bhattacharya, Amit Kansara, Seemant Chaturvedi, and William Coplin. The Increasing Utilization of Hemicraniectomy for Acute Ischemic Stroke in the United States. *Stroke* 2012;43:A128
10. Mitchell P, Gregson BA, Crossman J, Gerber C, Jenkins A, Nicholson C, et al. Reassessment of the HAMLET study. *Lancet Neurol* 2009;8(7):602-3.
11. Manawadu D1, Quateen A, Findlay JM. Hemicraniectomy for massive middle cerebral artery infarction: a review. *Can J Neurol Sci* 2008;35(5): 544-50.
12. Berrouschat J, Sterker M, Bettin S, Koster J, Schneider D. Mortality of space-occupying (malignant) middle cerebral artery infarction under conservative intensive care. *Int Care Med* 1998;24:620-3.
13. Wijdicks EFM, Sheth KN, Carter BS, Greer DM, Kasner SE, Kimberly TW, et al, on behalf of the American Heart Association Stroke Council. Recommendations for the Management of Cerebral and Cerebellar Infarction With Swelling: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. *Stroke* 2014;45: 1222-38. published online before print January 30 2014.