

วารสาร

ประสาทศัลยศาสตร์

NEUROLOGICAL SURGERY

ราชวิทยาลัยประสาทศัลยแพทย์แห่งประเทศไทย

The Royal College of Neurological Surgeons of Thailand

ปีที่ 7 ฉบับที่ 1 มกราคม - มิถุนายน 2559

Vol. 7 No. 1 January - June 2016

ISSN 1906-7984

วารสารประสาทศัลยศาสตร์
ปีที่ 7 ฉบับที่ 1 มกราคม – มิถุนายน 2559

Neurological Surgery
Vol. 7 No. 1 January – June 2016

เจ้าของ : ราชวิทยาลัยประสาทศัลยแพทย์แห่งประเทศไทย

สำนักงาน : อาคารเฉลิมพระบารมี ๕๐ ปี
เลขที่ 2 ซอยคุณย์วิจัย ถนนเพชรบุรีตัดใหม่ แขวงบางกะปิ
เขตห้วยขวาง กรุงเทพฯ ๑๐๓๑๐
โทรศัพท์ ๐๒-๗๑๘๑๙๙๖ โทรสาร ๐๒-๗๑๘๑๙๙๗

บรรณาธิการ : รองศาสตราจารย์นายแพทย์ภัทรวิทย์ รักษ์กุล

พิมพ์ที่ : บริษัท สำนักพิมพ์กรุงเทพเวชสาร
3/3 สุขุมวิท 49 แขวงคลองตันเหนือ เขตวัฒนา
กรุงเทพฯ ๑๐๑๑๐
โทร. ๐๒-๒๕๘-๗๙๕๔, ๐๒-๖๖๒-๔๓๔๗ โทรสาร ๐๒-๒๕๘-๗๙๕๔

วารสารประสาทศัลยศาสตร์
ปีที่ 7 ฉบับที่ 1 มกราคม – มิถุนายน 2559

Neurological Surgery
Vol. 7 No. 1 January – June 2016

คณะกรรมการบริหารราชวิทยาลัยประสาทศัลยแพทย์แห่งประเทศไทย

อดีตประธานวิทยาลัยฯ

นายแพทย์วัทัญญา ปรัชญาณห์
นายแพทย์ช่อเพี้ยว เตเชฟาร
นายแพทย์ศุภโชค จิตราณิช
นายแพทย์นครชัย เพื่อนปฐม

ประธานราชวิทยาลัยฯ

นายแพทย์ไชยวิทย์ ธนไพบูลย์
ผู้รังสรรค์แห่งประธานฯ

นายแพทย์สิรุจัน ศกุณณมารค

เลขานิการ

นายแพทย์รุ่งศักดิ์ ศิริวัฒน์

เหรัญญิก

นายแพทย์ยอดรัก ประเสริฐ

นายทะเบียน

นายแพทย์พีระ นาคลออ

ปฏิคม

นายแพทย์กุลพัฒน์ วีรสาร

กรรมการวิชาการ

นายแพทย์ศรัณย์ นันท�始ี

กรรมการวารสาร

นายแพทย์ภัทร์วิทย์ รักษ์กุล

ผู้แทนกลุ่มฯ ประสาทศัลยแพทย์ใน ราชวิทยาลัยศัลยแพทย์แห่งประเทศไทย

นายแพทย์สิรุจัน ศกุณณมารค

กรรมการกลาง

นายแพทย์กฤษณพันธ์ บุณยารัตเวช

นายแพทย์เกรียงศักดิ์ ลิมพสตาน

นายแพทย์ประชา ชัยกัม

นายแพทย์ประดิษฐ์ ไชยบุตร

นายแพทย์ศักดิ์ชัย แซ่เจ้ง

นายแพทย์เอก หังสูต

นายแพทย์อำนาจ กิจวรดี

Executive Committee 2015–2017

Past-President

Watanyoo Prachayanont, M.D.

Chopeow Taecholarn, M.D.

Supachoke Chitvanich, M.D.

Nakornchai Phuenpathom, M.D.

President

Chaiwit Thanapaisal, M.D.

President-elect

Siraruj Sakoolhamarka, M.D.

Secretary General

Rungsak Siwanuwath, M.D.

Treasurer

Yodruk Prasert, M.D.

Registrar

Peera Narkla-or, M.D.

Social Function

Kullapat Veerasarn, M.D.

Scientific Chairman

Sarun Nunta-Aree, M.D.

Editor of Journal

Pataravit Rukskul, M.D.

Representative Neurosurgeon in RCST

Siraruj Sakoolnamarka, M.D.

Board of Directors

Krishnapundha Bunyaratavej, M.D.

Kriengsak Limpastan, M.D.

Pracha Chayapum, M.D.

Pradit Chaiyabud, M.D.

Sakchai Saeheng, M.D.

Ake Hansasuta, M.D.

Amnat Kitkhuandee, M.D.

วารสารประจำเดือนศาสตร์
ปีที่ 7 ฉบับที่ 1 มกราคม - มิถุนายน 2559

Neurological Surgery
Vol. 7 No. 1 January - June 2016

กองบรรณาธิการวารสาร

นายแพทย์วัทัญญา ปรัชญาณนท์
นายแพทย์ช่อเพียง เต็ชพาร
นายแพทย์ศุภโชค จิตราภรณ์
นายแพทย์นครชัย เผื่อนปฐม
นายแพทย์ไชยวิทย์ อนไพบูล
นายแพทย์สิรรุจัน ศกุลณัมมารค
นายแพทย์รุ่งศักดิ์ ศิรานุวัฒน์
นายแพทย์ยอดรัก ประเสริฐ
นายแพทย์พีระ นาคลออ
นายแพทย์กุลพัฒน์ วีรสาร
นายแพทย์ศรัณย์ นันทารี
นายแพทย์ภัทร์วิทย์ รักษกุล
นายแพทย์กฤษณพันธ์ บุณยะรัตเวช
นายแพทย์เกรียงศักดิ์ ลิ่มพัสดาน
นายแพทย์ประชา ชัยภัม
นายแพทย์ประดิษฐ์ ไชยบุตร
นายแพทย์ศักดิ์ชัย แซ่เอ้ง
นายแพทย์เอก หังสูต
นายแพทย์อํานาจ กิจควรดี

Watanyoo Prachayanont
Chopeow Taecholarn
Supachoke Chitvanich
Nakornchai Phuenpathom
Chaiwit Thanapaisal
Siraruj Sakoolnamarka
Rungsak Siwanuwatn
Yodruk Prasert
Peera Narkla-or
Kullapat Veerasarn
Sarun Nunta-Aree
Pataravit Rukskul
Krishnapundha Bunyaratavej
Kriengsak Limpastan
Pracha Chayapum
Pradit Chaiyabud
Sakchai Saeheng
Ake Hansasuta
Amnat Kitkhuandee

คำแนะนำในการส่งบทความ (Information for Authors)

วารสารประจำศัลยศาสตร์ ใช้ชื่อภาษาอังกฤษว่า “Neurological Surgery” เป็นสื่อทางการของวิทยาลัย ประจำศัลยศาสตร์แห่งประเทศไทย พิมพ์เผยแพร่แก่สมาชิกของวิทยาลัยฯ กำหนดออกทุก 3 เดือน โดยมีวัตถุประสงค์ เพื่อ:

1. นำเสนอผลงานวิจัย ข้อเขียน บทความตลอดจนความคิดเห็นเชิงวิชาการทางประจำศัลยศาสตร์และ สาขาที่เกี่ยวข้อง
2. เป็นสื่อกลางใช้แลกเปลี่ยนความคิดเห็นต่างๆ ระหว่างสมาชิกของวิทยาลัยฯ
3. สนับสนุนกิจกรรมการศึกษาต่อเนื่องด้วยตนเองของสมาชิก

เพื่อให้บรรลุวัตถุประสงค์ดังกล่าว วารสารประจำศัลยศาสตร์ ยินดีรับบทความเป็นสื่อกลางระหว่างสมาชิก เพิ่มพูนความรู้ทางวิชาการแก่สมาชิกและวิชาการสาขาอื่นที่เกี่ยวข้อง บทความที่ส่งมาต้องไม่เคยพิมพ์เผยแพร่มาก่อน ข้อคิดเห็นในบทความ เนื้อหา และองค์ประกอบของเนื้อหาเป็นความรับผิดชอบของผู้เขียนบทความนั้น วิทยาลัย ประจำศัลยศาสตร์แห่งประเทศไทยไม่จำเป็นต้องเห็นพ้องด้วย และคณะกรรมการขอสงวนสิทธิ์ในการตรวจทาน แก้ไขและพิจารณาตีพิมพ์โดยมีหลักเกณฑ์ดังนี้

1. ประเภทบทความ

นิพนธ์ต้นฉบับ (Original articles)

เป็นรายงานผลงานวิจัย ค้นคว้า การเขียนบทความนิพนธ์ต้นฉบับให้ล้ำด้วยเนื้อหาดังต่อไปนี้

1. ชื่อเรื่อง (title), ผู้นิพนธ์ (author and co - authors), สถาบันที่ผู้นิพนธ์ปฏิบัติงาน (institute) และ แหล่งทุนสนับสนุน (ถ้ามี)
2. บทคัดย่อ (abstract) ทั้งภาษาไทยและภาษาอังกฤษ
3. คำสำคัญ (key word) สำหรับจัดทำด้วย ระบุไว้ใต้บทคัดย่อหรือ abstract
4. บทนำ (introduction)
5. วัสดุและวิธีการ (materials and methods)
6. ผลการศึกษา (results)
7. วิจารณ์ (discussions)
8. สรุป (conclusions)
9. เอกสารอ้างอิง (references)

บทความปริทัศน์ (review articles)

ควรเป็นบทความที่ให้ความรู้ใหม่ รวบรวมสิ่งตรวจพบใหม่ หรือเรื่องที่น่าสนใจที่สามารถนำไปประยุกต์ใช้ได้ หรือเป็นบทความวิเคราะห์โรค หรือ วิจารณ์สถานการณ์การเกิดโรค ประกอบด้วย

1. บทนำ (introduction)
2. วัตถุประสงค์ (objective)
3. เนื้อหาวิชา (content)
4. วิจารณ์ (discussions)
5. สรุป (conclusions)
6. เอกสารอ้างอิง (references)

รายงานผู้ป่วย (care report)

เขียนได้ 2 แบบ คือ รายงานอย่างละเอียด หรือสั้นๆ ประกอบด้วย บทนำ รายงานผู้ป่วยวิจารณ์อาการทางคลินิกผลตรวจทางห้องปฏิบัติการ เสนอ ข้อคิดเห็นอย่างมีขอบเขต สรุป บทคัดย่อ แนะนำให้มีภาษาไทย และภาษาไทย

บทความพิเศษ (special articles)

เขียนจากประสบการณ์ แสดงความคิดเห็น หรือจากการค้นคว้า

เทคนิคและเครื่องมืออุปกรณ์ (technique & instrumentation)

เพื่อเสนอเทคนิค หรืออุปกรณ์ใหม่ โดยจะต้องบอกชื่อปั๊ม แหล่งการรักษาด้วย

จดหมายถึงบรรณาธิการ (letter to the editor)

เพื่อให้ความคิดเห็นเกี่ยวกับบทความที่ตีพิมพ์ไปแล้ว

2. เอกสารอ้างอิง (Reference)

การอ้างอิงใช้ตาม Vancouver Style หรือ Uniform Requirement for Manuscripts Submitted to Biomedical Journals, 5th edition ค.ศ. 1997 โดยได้ตัวเลขยกรดับในเนื้อเรื่องตรงบริเวณที่อ้างอิง เรียงตามลำดับก่อนหลังการอ้างอิง แล้วจึงนำเอกสารที่ถูกอ้างอิงมาเรียงตามลำดับการอ้างอิงท้ายบทความ บทความที่มีผู้นิพนธ์ไม่เกิน 6 คน ให้ใส่ชื่อผู้นิพนธ์ทั้งหมด ถ้าเกิน 6 คน ให้ใส่ 6 คน แล้วตามด้วย “et al.” หรือ “และคณะ”

การอ้างอิงเอกสาร

Ratanalert S, Chompikul J, Hirunpat S, Pheunpathom N. Prognosis of severe head injury: an experience in Thailand. Br J Neurosurg 2002; 16(5):487-93.

การอ้างอิงวารสาร online

Sanders GD, Bayourni AM, Holodnity M, Owens DK. Cost-effectiveness of HIV screening in patients older than 55 year of age. Ann Intern Med [cited 2008 Oct 7]:148(2). Available from:<http://www.annals.org/cgi/reprint/148/12/889.pdf>

การอ้างอิงจาก World Wide Web

National Institute for Health and Clinical Excellence. Head injury triage, assessment, investigation and early management of head injury in infants, children and adults. Clinical guideline June 2003. <http://www.nice.org.uk/guidance/CG4/?c=91522> (accessed 23 November 2006).

การอ้างอิงหนังสือ หรือตำรา

ชื่อผู้เขียน. ชื่อหนังสือ. ครั้งที่พิมพ์ ชื่อเมือง (ใช้ชื่อเมืองชื่อเดียว): ชื่อโรงพิมพ์ ปี ค.ศ. ตั้งอย่าง : Greenberg MS. Handbook of Neurosurgery. New York: Thieme: 2001.

บทในหนังสือหรือตำรา

ชื่อผู้เขียน. ชื่อเรื่อง. ใน: ชื่อบรรณาธิการ. ชื่อหนังสือ. ครั้งที่พิมพ์. ชื่อเมือง. ชื่อโรงพิมพ์. ปี ค.ศ.: หน้าแรก-หน้าสุดท้าย

ตัวอย่าง: Y. Matsushima. Moyamoya disease. In: Youmans JR. editor. Neurological surgery. 4th ed. Philadelphia: W.B. Saunders; 1996: p. 1202-222.

3. การพิมพ์และการส่งต้นฉบับ

- ให้ส่งต้นฉบับที่จะลงตีพิมพ์ โดยโปรแกรมที่ใช้พิมพ์ต้องเป็น Microsoft Word. Font Angsana New ขนาดตัวอักษร 16 พร้อมไฟล์ประกอบรูปภาพ และกราฟ ไปยัง e-mail ของ คุณเพ็ญศรี ณัฐวงศ์ E-mail: pensrilib@yahoo.com
- การพิมพ์เนื้อเรื่องให้ใส่เลขหน้ากำกับทุกหน้าที่มุ่งหมายด้านบน

หน้าแรก หรือ title page เขียนเป็นภาษาไทยและอังกฤษ ประกอบด้วย

- (1) ชื่อเรื่อง
- (2) ชื่อ สกุลของผู้เขียน คุณวุฒิ โดยใช้ตัวอย่างของปริญญาหรือคุณวุฒิที่เป็นสากล (กรณีที่ผู้นิพิธ์มีหลายคน ให้ระบุทุกคน)
- (3) สถานที่ทำงาน
- (4) ชื่อเรื่องอย่างย่อ หรือ running title (ความยาวไม่เกิน 40 ตัวอักษร)

4. การรับเรื่องตีพิมพ์

หากต้นฉบับที่เสนอมาได้รับการพิจารณาให้นำมาลงตีพิมพ์ ทางสำนักงานจะแจ้งให้เจ้าของบทความทราบ พร้อมทั้งจัดส่งฉบับร่างให้ผู้เขียนตรวจสอบและขอคืนตามกำหนดเวลา

5. สถาบันที่ติดต่อ

รองศาสตราจารย์นายแพทย์ภัทรวิทย์ รักษ์กุล หน่วยประจำศัลยศาสตร์ คณะแพทยศาสตร์ มหาวิทยาลัยธรรมศาสตร์ ปทุมธานี 12120 โทร 02-7181996 หรือ โทรสาร 02-7181997

หรือติดต่อ คุณเพ็ญศรี ณัฐวงศ์

E-mail: pensrilib@yahoo.com

บทบรรณาธิการ

วารสารประสาทศัลยศาสตร์ ฉบับนี้ จัดทำขึ้นเพื่อสมาชิกของ ราชวิทยาลัยประสาทศัลยแพทย์แห่งประเทศไทย และผู้สนใจ เป็นบทความที่ได้จากสมาชิกส่งตีพิมพ์มาเพื่อเผยแพร่และแลกเปลี่ยนความรู้ระหว่างสมาชิก ด้วยกัน สำหรับฉบับนี้มีบทความที่นำเสนอในหลายเรื่องด้วยกัน มีงานวิจัยของแพทย์ประจำบ้านและคณาจารย์จากสถาบันต่างๆที่นำเสนอในงานวิจัยร่วมกันหลายสถาบันในหลายสาขา และมีความหลากหลายในเนื้อหาจากทุกผู้เชี่ยวชาญ

สุดท้ายนี้ ผู้นิพนธ์และคณาจารย์ท่าน คณาจารมการราชวิทยาลัยประสาทศัลยแพทย์แห่งประเทศไทย และกองบรรณาธิการทุกท่านที่ให้ความอนุเคราะห์ในการตรวจต้นฉบับ ทั้งนี้ทางคณาจารย์ บรรณาธิการจะพยายามพัฒนาและปรับระบบให้วารสารมีมาตรฐานและให้การสนับสนุนให้สมาชิกทุกท่านที่ส่งมาตีพิมพ์เผยแพร่ได้รวดเร็วยิ่งขึ้นเพื่อให้สมาชิกได้รับเนื้อหาที่สมบูรณ์ยิ่งขึ้น

รองศาสตราจารย์ นายแพทย์ ภัทรวิทย์ รักษ์กุล

บรรณาธิการวารสาร

สารบัญ

❖ Correlation of Magnetic Resonance Spectroscopy and Perfusion at Non-Enhancing	1
Edematous Area in High-Grade Glioma for Tumor Recurrence After Maximal Safe Resection	
Thongnual Kittipong, Witthiwej Theerapol, Chawalparit Orasa, Piyapittayanan Siriwan, Sangruji Tumtip	
❖ Factor Influencing Outcome of Pyogenic Spondylodiscitis	13
Kakanan Chumpon, Ponwijit Luckchai	
❖ แนวคิด Ideal closure line: เทคนิคในการหนีบหลอดเลือดสมองโป่งพอง	24
Concept of ideal closure line: A clipping technique for cerebral aneurysms	
กิติพร ศรีออมรัตนกุล, นาแสง อัครอธรรมโชติ, สมเกียรติ วงศ์สุริยันนท์	

Correlation of Magnetic Resonance Spectroscopy and Perfusion at Non-Enhancing Edematous Area in High-Grade Glioma for Tumor Recurrence After Maximal Safe Resection

Thongnual Kittipong^a, M.D., Witthiwej Theerapol^b, M.D.,

Chawalparit Orasa^c, M.D., Piyapittayanan Siriwan^d, M.D.,

Sangruji Tumtip^e, M.D.

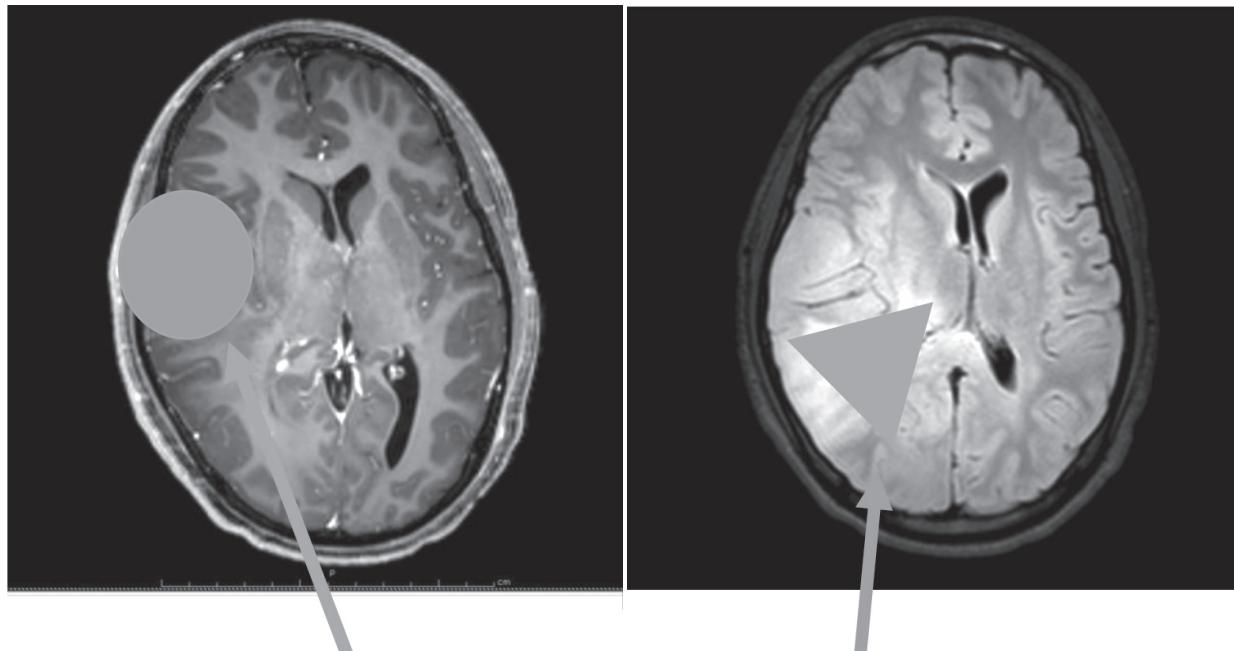
^{a,b}*Department of Surgery, c,d Department of Radiology, e Department of Pathology,*

Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand

Background

Malignant glioma is the most common primary malignant brain tumors. These tumors were classified into WHO2007 grade III (anaplastic astrocytoma, anaplastic oligodendrogloma, anaplastic oligoastrocytoma, anaplastic ependymoma, gliomatosis cerebri) and WHO grade IV (glioblastoma and gliosarcoma).^{2,3}

These malignant tumors had poor prognosis, even with optimal treatment such as maximal safe resection, radiotherapy or chemotherapy. Median survival time for patient with glioblastoma is less than 2 years and for anaplastic glioma is 2 – 5 years⁴⁻⁷ because of high infiltration and destruction of adjacent brain tissues.⁸


Many studies reported the extent of tumor cells that are wider than the demonstrations by conventional MRI T1W with contrast study.⁹⁻¹⁵ They suggested that the consideration of extent of high-grade

glioma by using MRI T2W images or T2-FLAIR images that demonstrated wider area than the imaging of T1W with contrast^{13,15}, which in this study are referred to the “non-enhancing edematous area” (NEA).

The Proton MR-spectroscopy (MRS) signal can be used to diagnose abnormal biochemical or metabolism of the lesion in brain tissue.^{16,17}

The height of each biochemical spectrum often overlaps between malignant and low grade tumor. Therefore, The mainly useful measurement will be in the ratio¹⁶⁻¹⁹, such as Cho/Cr, Cho/NAA

In addition, Alfonso et al.¹⁴ reported the study about MRS in non-enhancing edematous area to distinguish non-enhancing edematous area from purely vasogenic edema area, the results of MRS with high Cho / NAA more than 1 shows that the edema area will infiltrated with tumor cells (infiltrative tumor). These non-enhancing edematous area are very important to

Figure 1 Demonstrate enhancing area (T1w gd) and Non-enhancing edematous area (NEA) (T2 FLAIR).

determine the extent of these high grade brain tumor for surgical planning or radiation therapy and associated with predictors of survival after treatment.²⁰

Perfusion magnetic resonance imaging is potential methods for detecting tumor infiltration in NEA..Relative cerebral blood volume is also interested in many study.

The study of Weber MA et.al. on Perfusion MRI with sensitivity to detecting malignant glioma was 97%.In Siriraj hospital, Piyapittayanan S.,10 also demonstrated the effectiveness of discrimination between low grade and high grade glioma by using perfusion MRI.

In our institution, surgical treatment of brain high-grade glioma is an essential primary treatment in order to achieve maximal safe resection and tissue for pathologic diagnosis. As usual, surgical area will be resected based on T1W with contrast MRI but the extent of the abnormalities in brain tissue called “non-enhancing edematous area” may remain after surgery, these may

have opportunities to regrowth of the tumor. Hence, this study aimed to determine the correlation between recurrent time of the high-grade brain glioma patients who treated with standard treatment and the metabolic effects of magnetic resonance spectroscopy and perfusion MRI in non-enhancing edematous area.

Objective

To study between the correlation of magnetic resonance spectrometry parameter and perfusion MRI and the recurrent time of malignant glioma after maximal safe resection. Progression free survival and recurrent time after adjuvant therapy were analyzed.

Materials and Methods

During February 2009 to December 2014, 62 cases with clinically suspicious of malignant glioma were collected for advanced MRI project in Siriraj hospital. Included patients with newly diagnosed with a group of high-grade brain glioma, the diagnostic MRI

and advanced MRI including MR-spectroscopy and perfusion MRI were performed before maximal safe resection. The patients were excluded for analysis if they treated with other methods such as biopsy, radiation or chemotherapy alone without maximal safe tumor resection. All of these patient underwent maximal safe resection met the inclusion criteria. Extent of resection was categorized to total resection (GTR>90%), near-total resection (NTR 75–90%), partial resection (<75%)²⁰⁻²³ and confirm with immediate post op MRI (within 72 hours).

The histopathology reports of all 62 patients confirmed high-grade glioma according to the current World Health Organization (WHO) classification 2007^{1,2}. Radiation and neuro-oncologists were consulted for appropriated radiation chemotherapy.

We reviewed the medical records to obtain information of the patients and treatment characteristics. The patients' age, sex, date of preoperative MRI and MRS, date of maximal safe resection, adjuvant treatment, date of follow up imaging that defined as 1st recurrence, and date of last follow up.

Tumor recurrence was also defined by the appearance of residual tumor growth on imaging studies compared with previous imaging studies during treatment period²⁴.

Recurrent time was defined by the time from date of maximal safe resection to the time that 1st tumor recurrence (the time point at which the contrast-enhancing volume increased) was found on follow-up imaging studies (CT and/or MRI) as determine by neuro-radiologist.

Degree of edema was classified by percent of NEA size on tumor size.

Mild edema = <50% tumor size

Moderate edema = 50–75% tumor size

Severe edema = > 75 % tumor size

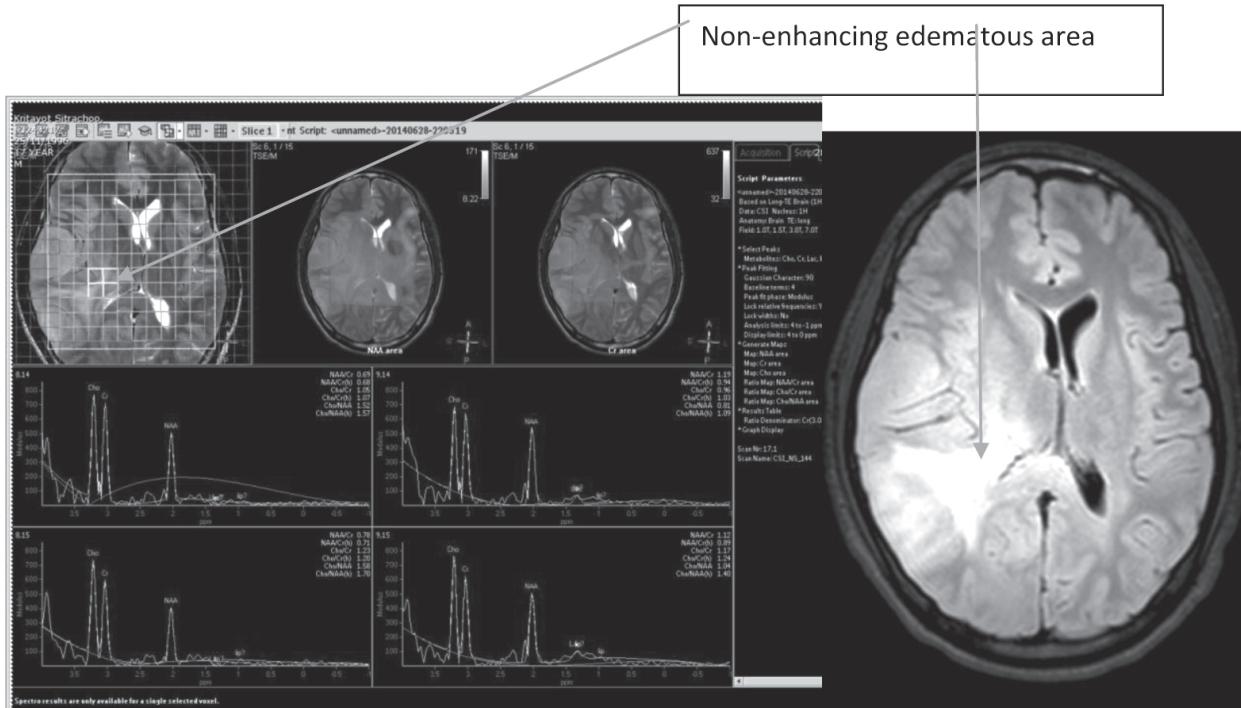

The Multi-voxel MRS was performed after administration of gadolinium²⁵. Multi-voxel proton chemical shift imaging or spectroscopic imaging used the turbo spin echo technique with TR, TE, and NEX of 2000, 288 ms, and 1 respectively. Single section with 15-mm section thickness was obtained in 4 minutes and 42 seconds on axial plane. The volume of interest (VOI) consisted of a 10x10 cm-region placed within a 23x19 cm field of view (FOV), with a voxel size of 1x1x1.5 cm³. Single voxel MR spectroscopy used a point-resolved spectroscopy (PRESS) turbo spin echo with TR and TE of 2000 and 35 ms or 128 ms, respectively. The voxel size varied from 1x1x1 to 2x2x2 cm³ depending on tumor size. The metabolite peaks were assigned as follows: Cho, 3.22 ppm; Cr, 3.02 ppm, NAA, 2.02 ppm; metabolite lipids, 0.5–1.5 ppm; Lactate, 1.33 ppm. The MRS data was sent for processing on the commercial software (Spectro-tool, ViewForum, Philips, the Netherlands). The selected slices were based on Gd-T1WI at the areas of lesion enhancement. If no enhancing area was demonstrated, FLAIR and T2WI were used for selection region of interest (ROI) by a neuroradiologist. The radiologist se-

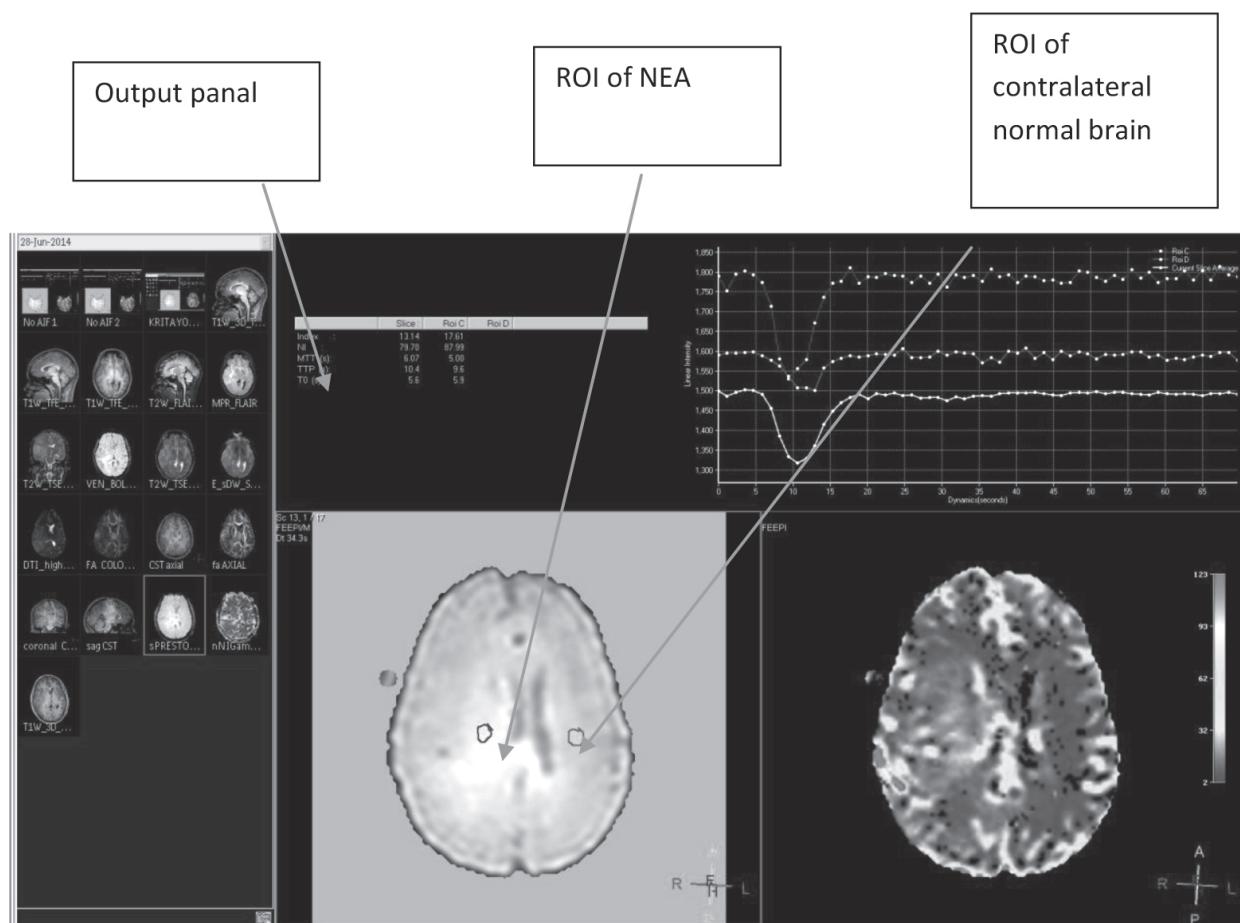
Table 1 Show the spectrum of specific metabolites. Locations (ppm) and properties of substances that were often used in the MRS study^{16,17}

ppm	Metabolite	Properties
0.9–1.4	Lipids	Products of brain destruction
1.3	Lactate	Product of anaerobic glycolysis
2.0	NAA	Neuronal marker
3.0	Creatine	Energy metabolism
3.2	Choline	Cell membrane marker

Figure 2 Region of interest was placed in tumor (cluster of yellow square). The spectrum of each metabolite was measure, the vertical axis is the height of peak of the metabolite; the horizontal axis is the specific ppm (location) of each specific metabolite.

Figure 3 Region of interest was placed in NEA (cluster of yellow square). The spectrum of each metabolite was measure, the vertical axis is the height of peak of the metabolite; the horizontal axis is the specific ppm (location) of each specific metabolite.

lected the areas which was the most compatible with solid part of the tumor.


The region of interest was placed for measuring each metabolite at enhancing area (EA), Non-enhancing edematous area (NEA), and contralateral normal white matter. The metabolites displayed on the monitor were collected from the highest values of areas including lesion choline (Cho), creatine (Cr), N-acetyl-aspartate (NAA), lactate (Lac), lipid (Lip), ratio of Cho/Cr and Cho/NAA. Calculation of ratio of lesion Cho to normal Cho(nCho), nCr(Cr lesion/Cr normal) and nNAA (NAA lesion/NAA normal) was also performed.

The relative cerebral blood volume was measure and compare between tumor and NEA (rCBV ratio = rCBV[tumor]/rCBV[contralateral white matter a] because histological heterogeneity within malignant gli-

mas is common, rCBV maps of high-grade tumors are often heterogeneous, containing both high and low rCBV foci. We focus on maximal CBV is taken to be representative of the region of interest, enhancing area and NEA^{30,31}. Stephan G et.al. studied on best method to measure CBV, and suggest to use maximal CBV.

Statistical analysis

Statistical analysis was performed by using SPSS version 18. Descriptive statistics, inferential statistics for general data, Kaplan-Meier survival analysis, and Cox-regression analysis with recurrent time as the dependent variables were analyzed. The two-sample t test is used to compare the average metabolic ratio for non-enhancing edematous area and the enhancing area.

Figure 4 Show work station window to measure region of interest by pick up highest CBV foci in each ROI.

Table 1 Summarizes the clinical characteristics, tumor characteristics and surgical resections of all 62 patients.
 (GBM=glioblastoma multiform, AA=anaplastic astrocytoma, AO=Anaplastic oligodendrogloma, AE=anaplastic ependymoma, RT=Radiotherapy, CMT=Chemotherapy)

Characteristic	All patient	GBM	AA	AO	AE
	n=62	n=50	n=5	n=6	n=1
Mean age in years (SD)	46.48 (13.87)	47.26 (14.5)	41.40 (13.77)	42.33(6.6)	58
Sex					
Male (%)	35 (56.5)	28 (56)	4 (80)	3 (50)	0
Female (%)	27 (43.5)	22 (44)	1 (20)	3 (50)	1 (100)
Size (cm), (SD)	4.11 (1.71)	4.22 (1.65)	3.22 (1.76)	4.16 (2.28)	2.6
Side					
Left (%)	31 (50)	24 (48)	4 (80)	2 (33.3)	1 (100)
Right (%)	30 (48.4)	25 (50)	1 (20)	4 (66.6)	0
Bilateral (%)	1 (1.6)	1 (2)	0	0	0
Lobe					
Parietal (%)	21 (33.9)	16 (32)	4 (80)	1 (16.6)	0
Frontal (%)	19 (30.6)	15 (30)	0	4 (66.6)	0
Temporal (%)	14 (22.6)	12 (24)	1 (20)	1 (16.6)	0
Insular (%)	4 (6.5)	4 (8)	0	0	0
Occipital (%)	2 (3.2)	1 (2)	0	0	1 (100)
Brain stem (%)	1 (1.6)	1 (2)	0	0	0
Cerebella (%)	1 (1.6)	1 (2)	0	0	0
Edema					
Absence (%)	4 (6.5)	2 (4)	0	2 (33.3)	0
Presence (%)	58 (93.5)	48 (96)	5	4 (66.6)	1 (100)
Mild (%)	20 (32.3)	15 (30)	1 (20)	3 (50)	1 (100)
Moderate(%)	18 (29.0)	16 (32)	1 (20)	1 (20)	0
Severe (%)	20 (32.3)	17 (34)	3 (60)	0	0
Resection					
Gross total (%)	44 (71.0)	36 (72)	3 (60)	4 (66.6)	1 (100)
Near total (%)	17 (27.4)	13 (26)	2 (40)	2 (33.3)	0
Partial (%)	1 (1.6)	1 (2)	0	0	0
Deficit					
Absence (%)	46 (74.2)	40 (80)	3 (60)	6 (100)	1 (100)
Presence (%)	12 (19.4)	10 (20)	2 (40)	0	0
Adjuvant	Therapy				
	Radiotherapy (%)	28 (45.2)	22 (44)	2 (40)	3 (50)
	CMT+RT (%)	21 (33.9)	18 (36)	1 (20)	2 (33.3)
	None (%)	13 (21.0)	10 (20)	2 (40)	1 (16.6)
Median Time to recurrence in	4.7	4.5	14.2	15.1	4.2
months (n=44)					

Time to recurrence was censored if the patient had progression free at the time of analysis.

Approval for this study was obtained from the Siriraj Institutional Review Board, Mahidol University.

Result

62 patients with suspicious clinical symptoms and initial imaging of gliomas underwent conventional and advanced MRI for brain tumor. All of the 62 patients underwent maximal safe resection and histopathologic results of high-grade glioma were selected for evaluation. The pathologic diagnosis was based on WHO 2007 included. Demographic data, diagnosis, tumor size, tumor location, grade of tumor edema and extent of maximal safe resection were summarized in Table 2

In this study, there were 35 male and 27 female with median age of 46.5 years. Almost of tumor located in subcortical area, parietal (21 out of 62), frontal (19 out of 62) and temporal (14 out of 62) re-

spectively. Most of the patient has edema (93.5%) on preoperative MRI with no significant different in degree of edema. Forty four out of 62 patients (71%) accomplished gross total resection. Forty six from 62 had no immediate post op deficit (74.2%). The vast majority of pathologic result was glioblastoma (WHO 2007 grade IV), anaplastic oligodendrogloma (WHO 2007 grade III) and anaplastic astrocytoma (WHO 2007 grade III) respectively. Adjuvant therapy in our study mainly is radiotherapy, and concurrence radiotherapy and chemotherapy based on evidence based support. Recurrent time was calculated and present in

Table 2 Time to recurrence depend on presence of edema (months)

edema	Mean	SD
no edema	8.50	7.77
edema	6.69	6.16
Total	6.82	6.14

Table 3 Time to recurrence depend on degree of edema (months).

Pathology	Total (n=26)	Mild (SD)	Moderate (SD)	Severe (SD)
GBM	5.9 (21)	4.1 (2.8)	6.0 (8.4)	7.5 (4.2)
AA	18 (2)	24 (-)	12 (-)	-
AO	4.5 (2)	4.5 (4.9)		
AE	4 (1)			
All pathology (SD)	6.7 (6.2)	6.0 (6.5)	6.8 (8.0)	7.5 (4.2)

Table 4 Compare mean of radiologic factor and difference between enhancing area (EA) and Non-enhancing edematous area.

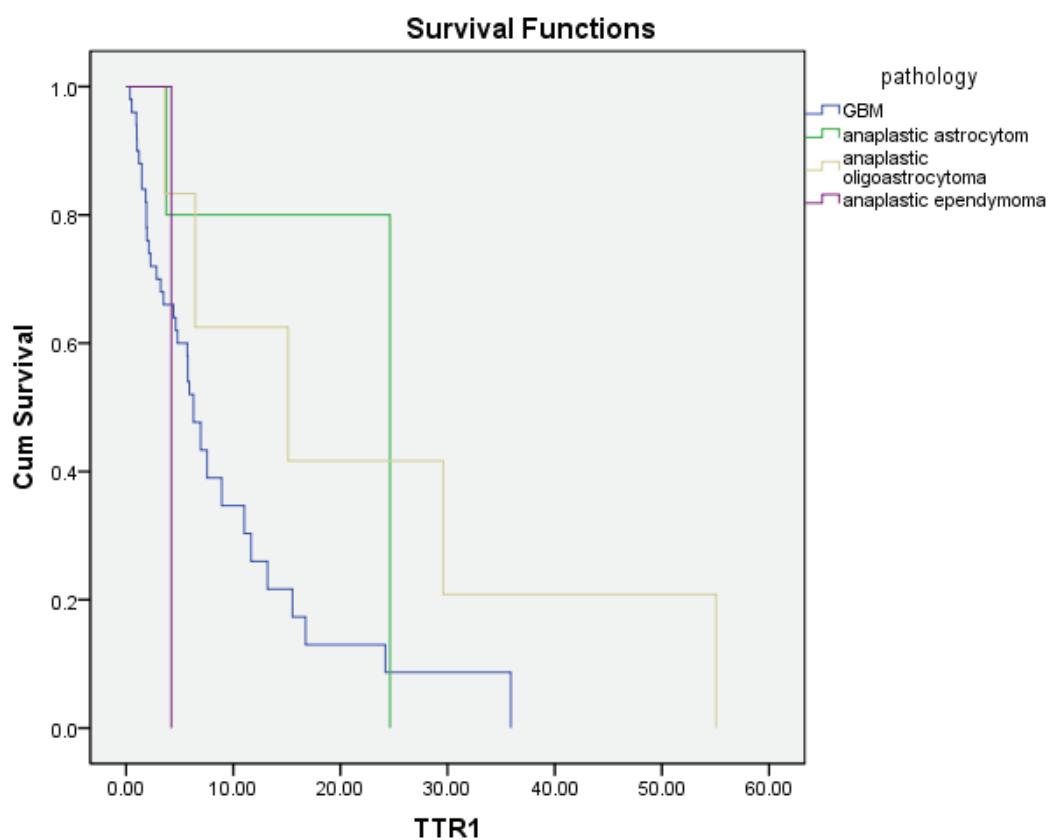
Radiologic parameter	Mean (SD)		p-value
	EA	NEA	
Choline/NAA	2.96 (3.10)	1.11 (2.38)	0.001
Choline/Creatin	3.14 (6.70)	1.24 (0.62)	0.041
rCBV	5.36 (5.94)	2.16 (1.94)	0.01

“months”. Median recurrent time was 4.7 months and slightly decrease in GBM, while patients with grade III WHO2007 has tendency to recurrence after 1 years

Mean recurrent time in patients with peri-tumoral edema and those without peri-tumoral edema was show in Table 2. Overall recurrent time was 6.82 months with much more longer recurrent time in patients without peri-tumoral edema 8.50 months compare with 6.69 months in group of peri-tumoral edema.

The degree of edema was compare based on pathologic result, there is no statictic significant between degree of edema and recurrent time based on pathologic feature.

There was statistic significant in all three parameter (Choline/NAA,Choline/Creatin,rCBV) to differen-


tiate enhancing edematous area and non-enhancing edematous area (Table 4).

Univariate analysis of predictor of recurrent time (Table5) in ours study revealed no statistic significant in variable of general parameter and ratio of metabolite in lesion and NEA. Relative cerebral blood volume was not significant different in lower and more than 1. There was no statistic significant in recurrent time in quality of resection. Adjuvant treatment with concurrence chemotherapy and radiation had longer time recurrent when compare to radiotherapy alone.

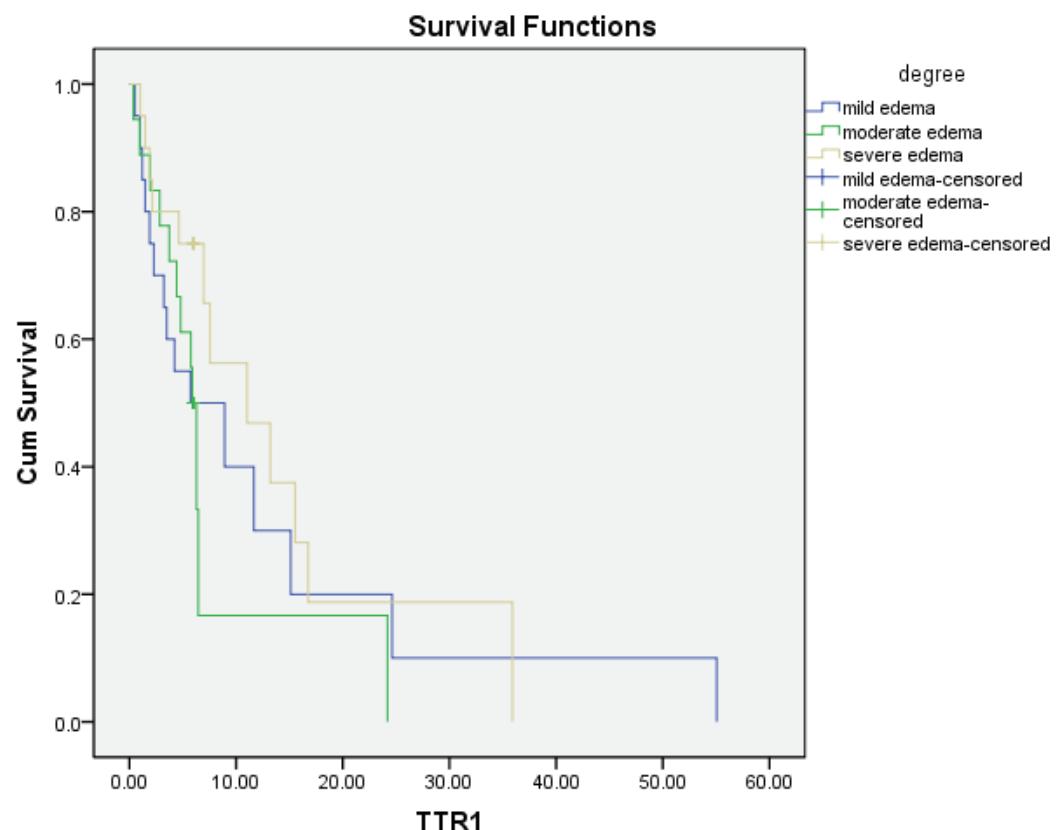

GBM had tendency to progress earlier, while WHO grade III tend to progress later (anaplastic astrocytoma and anaplastic oligodendrogloma). The degree of edema and recurrent time was analyzed. (Figure 3)

Table 5 Univariate predictor of TTR, cox proportional Hazard.

Variable	Hazard ratio	95% CI	P value	TTR in months (median)
Age <60	1			5.2
Age >=60	1.01	0.46-2.20	0.972	3.8
Male	1			4.8
Female	0.72	0.39-1.33	0.298	4.4
Degree of edema				
Mild	1			6.0
Moderate	1.28	0.57-2.84	0.541	6.8
Severe	0.70	0.33-1.49	0.260	7.5
Resection				
GTR	1			4.7
NTR	0.99	0.46-2.97	0.989	3.0
STR	5.03	0.64-39.30	0.120	1.9
Adjuvant				
RT	1			4.6
RT+CMT	1.02	0.50-2.09	0.949	3.6
Chol/NAA <1	1			4.6
Chol/NAA >=1	0.48	0.18-1.26	0.138	5.2
Chol/NAA peri <1	1			4.6
Chol/NAAperi >=1	0.95	0.41-2.18	0.899	5.1
rCBVPeri <1	1			5.9
rCBVPeri >=1	0.67	0.24-1.86	0.442	4.2

Figure 2 Kaplan-Meier plot: time to recurrence in high grade glioma patients.

Figure 3 Kaplan-Meier plot, Times to recurrence with degree of edema.

Interestingly moderate edema had shortest progression time when compare with mild and severe edema.

Discussion

Previously paper from our center Wongpraphairot Suban³² study on choline/NAA, Choline/Creatine parameter on recurrent time in high grade glioma and found statistic insignificant between these parameter (only age parameter that is significant correlation with recurrent time). Chen-Xing Wu et al.³⁴ study on 87 patient and found significant correlation between presence of peri-tumoral edema and tumor necrotic on survival of malignant glioma. In many study there were many significant variable on recurrent time (age, extent of surgical resection and chemo-radiation treatment)^{20,26-29}, but in our study there was statistic insignificant in these parameter

In our study from 62 patient we found significant different in MRI parameter Choline/NAA, Choline/Creatin, rCBV on enhancing and

non-enhancing edematous area. But when we compared hazard ratio of below and equal to higher than 1 in these parameter we found statistic insignificant to predict recurrent time. This insignificant may need more sample size and follow up time.

Conclusion

Relative cerebral blood volume (rCBV) and ratio of Choline/NAA in non-enhancing edematous area is different from enhancing area. To predict tumor recurrent time, these radiologic parameters may not useful.

References

1. Kleihues P. Pathology and genetics of tumours of the nervous system. In: Cavenee W, editor. In: World Health Organization Classification of Tumours of the Nervous System, Editorial and Consensus Conference Working Group. Lyon, France: IARC Press; 2000.
2. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. *Acta Neuropathol.* 2007;114(2):97-109. Epub 2007/07/10.
3. Scheithauer BW, Fuller GN, Vandenberg SR. The 2007 WHO classification of tumors of the nervous system: controversies in surgical neuropathology. *Brain Pathol.* 2008;18(3):307-16. Epub 2008/06/06.
4. Wen PY, Kesari S. Malignant gliomas. *Curr Neurol Neurosci Rep.* 2004;4(3):218-27. Epub 2004/04/23.
5. DeAngelis LM. Brain tumors. *N Engl J Med.* 2001;344(2):114-23. Epub 2001/01/11.
6. Narayana A, Yamada J, Berry S, Shah P, Hunt M, Gutin PH, et al. Intensity-modulated radiotherapy in high-grade gliomas: clinical and dosimetric results. *Int J Radiat Oncol Biol Phys.* 2006;64(3):892-7. Epub 2006/02/07.
7. Wen PY, Kesari S. Malignant gliomas in adults. *N Engl J Med.* 2008;359(5):492-507. Epub 2008/08/02.
8. Wild-Bode C, Weller M, Wick W. Molecular determinants of glioma cell migration and invasion. *J Neurosurg.* 2001;94(6):978-84. Epub 2001/06/21.
9. Croteau D, Scarpace L, Hearshen D, Gutierrez J, Fisher JL, Rock JP, et al. Correlation between magnetic resonance spectroscopy imaging and image-guided biopsies: semiquantitative and qualitative histopathological analyses of patients with untreated glioma. *Neurosurgery.* 2001;49(4):823-9. Epub 2001/09/21.
10. Kelly PJ, Daumas-Dupont C, Kispert DB, Kall BA, Scheithauer BW, Illig JJ. Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. *J Neurosurg.* 1987;66(6):865-74. Epub 1987/06/01.

28. Lacroix M, Abi-Said D, Journey DR, Gokaslan ZL, Shi W, DeMonte F, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. *J Neurosurg.* 2001;95(2):190-8. Epub 2002/01/10.

29. Attenello FJ, Mukherjee D, Datoo G, McGirt MJ, Bohan E, Weingart JD, et al. Use of Gliadel (BCNU) wafer in the surgical treatment of malignant glioma: a 10-year institutional experience. *Ann Surg Oncol.* 2008;15(10):2887-93. Epub 2008/07/19.

30. T Sugahara, Y Korogi, M Kochi, I Ikushima, T Hirai, T Okuda, Y Shigematsu, L Liang, Y Ge, Y Ushio and M Takahashi Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. *American Journal of Roentgenology December 1998, Volume 171, Number 6*

31. Stephan G. Wetzel, Dr med2,, Soonmee Cha, MD,, Glyn Johnson, PhD,, Peter Lee, BS,, Meng Law, MD,, David L. Kasow, MD,, Sean D. Pierce, MD, and, Xiaonan Xue, PhD Relative Cerebral Blood Volume Measurements in Intracranial Mass Lesions: Interobserver and Intraobserver Reproducibility Study See comment in PubMed Commons below *Radiology.* 2002 Sep;224(3):797-803

32. Suban, CORRELATION OF MAGNETIC RESONANCE SPECTROSCOPY AT NON-ENHANCING EDEMATOUS AREA IN HIGH-GRADE GLIOMA FOR TUMOR RECURRENCE AFTER MAXIMAL SAFE RESECTION

33. Saurabh Sinhaa, Mark E. Bastinb, Ian R. Whittlea and Joanna M. Wardlawa Diffusion Tensor MR Imaging of High-Grade Cerebral Gliomas

34. Chen-Xing Wu1, Guo-Shi Lin2, Zhi-Xiong Lin*, Jian-Dong Zhan, Shui-Yuan Liu2and Chang-Fu Zho Peritumoral edema shown by MRI predicts poor clinical outcome in glioblastoma

Factor Influencing Outcome of Pyogenic Spondylodiscitis

Kakanan Chumpon, Ponwijit Luckchai

Department of Surgery and Neurosurgery division at Faculty of Medicine Siriraj Hospital

บทคัดย่อ Abstract

Background: Pyogenic spondylodiscitis is a rare condition but might be devastating and fatal. Traditional treatment is surgical debridement follow by antibiotics. A retrospective study was designed to assess the effect of clinical findings and treatment methods on the outcome.

Material and Methods: 21 patients were reviewed. There were 13 men and 8 women, with age ranging from 24 to 85 years, mean age 61.9 years. 5 patients with complete cord. Pyogenic spondylodiscitis found in cervical [12] thoracic [2], lumbar [4] and multiple [3] regions. The diagnosis was defined by clinical findings, culture, histopathology, and radiological methods such as magnetic resonance imaging [MRI] and computed tomography [CT] scans. All patients received surgical debridement and follow with medication.

Results: A total of 21 patients, operative treatment was performed. Surgical debridement with or without instrumentation was done in all cases. After surgical debridement, clinical was improved. The most presenting symptom is spinal pain. All of patients have elevated ESR and CRP. The most common bacterium isolated was *Staphylococcus* spp. Two mortality case was observed.

Conclusion: Pyogenic spondylodiscitis should be suspected in people having pain and local tenderness in the spinal region with rise in inflammatory parameters in blood. The most common bacterium was *Staphylococcus* species, but there were not still a greater number of patients in this study. Therefore, In case with severe neurological deficit, surgical debridement follow by antibiotic therapy is the most effective treatment. Limitation of data is lack of uncontrolled study group.

Keywords: factor influencing, pyogenic spondylodiscitis

Introduction and Epidemiology

Infection of the intervertebral disc and the adjacent vertebrae, variably referred to as pyogenic spondylodiscitis (PS), disc space infection, and vertebral osteomyelitis, all with or without associated epidural or paravertebral abscesses. PS is an infection

that involves one or more of the extradural components of the spine. Its complications include epidural, paravertebral, and psoas abscess formation.¹ The incidence has been reported to be between 0.2 and 2 cases per 100,000 per annum and there is evidence suggesting that the incidence is rising, possibly re-

lated to the improved life expectancy of patients with chronic debilitating diseases.²⁻⁴ Diagnosis, which can be difficult, is based on clinical, laboratory, and radiological features. It is often delayed or missed due to the rarity of the disease, the insidious onset of symptoms, and the high frequency of spinal pain in the general population.⁵ It is important because of its potential morbidity and mortality; therefore, early diagnosis and effective antibiotic therapy and surgical decompression with debridement are required.⁶ The aim of this study was to evaluate the risk factors, bacteriological features, clinical, laboratory and radiological findings of PS, and treatment outcome.

Materials and Methods

This study was performed in the Neurosurgery division, department of surgery at Faculty of Medicine Siriraj Hospital. Patient who underwent treatment for pyogenic spondylodiscitis between January 2012 and October 2015. We were retrospectively evaluated. Medical records, radiological imaging, bacteriologic results, antimicrobial and surgical therapies were reviewed.

The diagnosis of PS was defined by clinical findings, blood count, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), culture, histopathology, and radiological methods such as magnetic resonance imaging (MRI) and computed tomography (CT) scans.

The diagnosis of PS was established when 1. clinical symptoms of spinal pain with inflammatory characteristic features [unrelieved by rest] or fever [temperature of 38°C], as well as neurological deficit on physical examination; 2. Imaging finding compatible with vertebral osteomyelitis⁷ 3. microbiological evidence

such as isolation of a microorganism from open bone biopsy specimens, cultured blood, and/or specimens from another adjacent infectious foci. Adjacent infectious foci included epidural abscesses or masses, abscesses in paravertebral or psoas or iliopsoas muscles.

We analyzed the following data: age; sex; duration of symptoms before surgical treatment; patient-related risk factors or chronic underlying diseases (e.g., diabetes mellitus, previous bacteraemia or focal infections, intravenous drug used and immunodeficiency); clinical features; hematologic and biochemical features (blood count, erythrocyte sedimentation rate [ESR], and C-reactive protein[CRP] value); radiological features (from CT, and/or MRI); microbiological features; therapeutic records.

Therapeutic failure was defined as worsening symptoms after a month of specific treatment. Functional sequelae were considered to be stratifying the level of functional restriction in mobility from myelopathy, by Nurick functional scale⁸ and ASIA Classification. Outcome was defined as poor if the patient had therapeutic failure.

For the statistical analysis of data we used the IBM SPSS Statistics Data Editor (version 22). Descriptive statistics was analyzed by SPSS.

The Mann-Whitney U nonparametric test or Student's t test was used for comparison of means. Fisher's exact test or Pearson's x² test, and Wilcoxon Signed Ranks test for comparison of proportions. Differences were considered significant at a P value of <.05.

Result

Based on the established diagnosis, 21 patients were finally hospitalized in the department of neuro-

surgery. The demographic data of the patients is shown on Table I. There were 13 men and 8 women, with age ranging from 24 to 85 years, mean age 61.9 years. Of 21 patients, 7 [33%] had diabetic mellitus, 11 [52%] had hypertension, 2 [9.5%] had dyslipidemia, 2 [9.5%] had cirrhosis, 1 [4.8%] had nasopharyngeal cancer, 1 [4.8%] had chronic renal failure. Six [28.6%] patients had no comorbidity.

In 7 [37.3%] patients presented cause of source of infection, most common cause was urinary tract infection [4 patients; 19%], 2 [9.5%] patients had sepsis from MSSA and Streptococcus spp. [Table I]

Among various primary symptoms distinctly ob-

served in these patients, an episode of pain was the most frequently encountered symptom in 18 [85.7%] patients, followed by fever in 10 [47.6%] patients. The duration from onset of disease to first examination ranged from 4 days to 8 months. A total of 20 patients [95.2%] showed myelopathy and motor weakness. Only one patient NO: 14 showed without clinical myelopathy. Among the 21 patients in our study, there were ASIA and Nuricks Classification [Table 2]

Laboratory investigations revealed elevated CRP [$>5\text{mg/L}$] in 15 [71.4%] patients, elevated ESR [$>15\text{ mm/h}$] in 16 [76.2%] patients, and leukocytosis [leukocyte count of $>10.5 \times 10^9/\text{L}$] in 11 [52.4%] pa-

Table I Demographic and clinical data

Patient No	Age	Sex	Medical history	Smoking	Alcohol Drinking	Time to diagnosis (Day)	Predisposing factor
1	64	F	HT	N	N	30	NO
2	57	M	DM,HT,CA nasopharynx	Y	Y	30	UTI
3	40	M	DM,HT	Y	Y	4	NO
4	55	F	-	N	N	60	NO
5	59	M	CA nasophaynx	Y	Y	90	NO
6	63	F	DM,HT,cirrhosis	N	N	21	Pasaspinal abscess
7	69	M	DM,GT,DLP,gout	N	N	240	UTI
8	73	M	-	N	N	14	NO
9	76	M	-	N	N	14	Sepsis
10	77	F	HT	N	N	90	NO
11	40	M	DM, cirrhosis	N	Y	14	NO
12	53	M	-	N	N	14	NO
13	47	M	-	N	N	14	NO
14	24	M	-	N	N	60	NO
15	69	F	DM, HT, CRF	N	N	14	Sepsis
16	49	M	Old CVA	N	N	60	NO
17	73	F	HT	N	N	45	NO
18	74	M	HT	N	N	14	UTI
19	75	F	HT	N	N	30	NO
20	78	M	DM, HT	N	N	10	NO
21	85	F	HT, DLP	N	N	14	UTI

Table 2 Clinical finding in case of preoperative pyogenic spondylodiscitis

Clinical finding	NO. of cases(%)
Neck pain	13 (61.9)
Back pain	8 (38.1%)
Fever	10(47.6%)
Tenderness	13 (61.9%)
Limit ROM	17 (81%)
Radiculopathy	0 (0%)
Myelopathy	20 (95.2%)
Weakness	20 (95.2%)
Bowel-bladder involvement	13 (61.9%)
ASIA Score	A: 5(23.8%) B: 4(19%) C: 9(42.9%) D: 2(9.5%) E: 1(4.8%)
Nurick's Classification	0: 1(4.8%) 2: 4(14.3%) 3: 1(4.8%) 4: 6(28.6%) 5: 10(47.6%)

Table 3 Laboratory finding in case of preoperative pyogenic spondylodiscitis

Patient No	Leukocytosis (> 10,500)	ESR (mm/hr)	CRP (mg/dl)	Hemoculture	Tissue culture
1	No	-	-	no	Strept_spp
2	Yes	98	76	no	Pseudomonas_spp
3	Yes	58	9	no	No
4	Yes	110	406	no	MSSA
5	No	-	-	no	No
6	No	92	71	Stap_spp	MSSA
7	Yes	-	-	no	E.coli
8	No	-	-	no	MSSA
9	No	94	17	Strept_spp	Strept_spp
10	No	86	148	Bacillus spp	Stap_spp
11	Yes	87	74	MSSA	MSSA
12	Yes	86	129	No	No
13	Yes	46	241	No	Strept_spp
14	No	-	-	No	No
15	Yes	117	137	MSSA	MSSA
16	No	94	57	No	Stap_spp
17	No	103	104	No	Strept_spp
18	Yes	53	17	Stap_spp	E.coli
19	No	86	148	No	Stap_spp
20	Yes	105	132	No	No
21	Yes	53	3	No	No

tients. Blood and tissue cultures were taken all of case; 6/21 [28.6%] of the blood cultures were positive; Tissue samples cultures were positive in 15 [71.4%] [Table 3].

Five microorganisms were isolated in 15 [71.4%] cases of pyogenic spondylodiscitis. The most frequent etiologic agent was *Staphylococcus* species[53.3%], 5 [55.5%] of 8 *staphylococcus* species were methicillin-sensitive-*Staphylococcus aureus*. Four [26.6%] patients were diagnosed as having *Streptococcus* species. 1 patient was infection by *Psuedomonas* species and 2 patients were infection by *Escherichia coli*. All

cases of gram negative infection were related to UTI. Table 3 shows the distribution of microbiological finding isolated from operative samples.

There were no differences in leukocyte counts dependent on the presence or absence of positive blood cultures[P = 0.63], abscesses, or epidural masses [P=0.47][Table 4.1,4.2]. At diagnostic time, raised ESR (>15 mm/h) found in 100% of the 16 patients for whom it was evaluated, and 15 of 16 [95.2%] patients have raised CRP level (>5 mg/L) for whom it was evaluated. Improvement of Nurick or ASIA score showed significant decrease ESR after surgical de-

Table 4.1 Comparison of Leukocytosis condition with hemoculture report.

			Positive hemoculture		Total
			No	Yes	
leukocytosis	no	Count	7	3	10
		% within leukocytosis	70.0%	30.0%	100.0%
	yes	Count	8	3	11
		% within leukocytosis	72.7%	27.3%	100.0%
Total		Count	15	6	21
		% within leukocytosis	71.4%	28.6%	100.0%

P value 0.63

Table 4.2 Comparison of Leukocytosis condition with epidural abscess

			epidural_abscess		Total
			no	yes	
leukocytosis	no	Count	1	9	10
		%within leukocytosis	10.0%	90.0%	100.0%
	yes	Count	0	11	11
		% within leukocytosis	0.0%	100.0%	100.0%
Total		Count	1	20	21
		% within leukocytosis	4.8%	95.2%	100.0%

P value 0.47

compression [$P<0.05$] [Table 5.1] and all of patients in this study have decreased of the CRP after surgical decompression significantly [$P<0.05$] [Table 5.2]

Among the 21 patients in our study, there were 11 cervical lesions, 2 thoracic lesions, 4 lumbar lesions, and 3 multiple combined lesion. Associate finding were evaluated, the 14 patients had epidural abscess, 6 had epidural and paraspinal abscess and 1 had burst fracture.

In 21 patients the initial treatment method was surgical decompression and debridement under general anesthesia. The most frequent indication were drainage of abscess, relief of compression of spinal cord and spinal stabilization. In 3 patients [patient No: 4,10,19] the percutaneous drainage of paraspinal abscess were performed under intervention. The application of metallic instrumentation to the spine [totally 16 patients. 2 patients [No:7,12] underwent to reoperation. In No:2 patient have occipital screw pull out and revised occipital screw with wiring fixation were done and No:12 patient underwent to reexplore re-

move screws of right L5 and laminectomy S1 with revision of L5-S1 rods. Antibiotic therapy was applied as an initial treatment method after surgical decompression. Antibiotic therapy was applied according to microbiology culture. All patients received minimum 2 weeks of I.V. antibiotics. [Table 6]

Follow up was completed for all patients, except 2 patient had died from cardiovascular event and upper airway obstruction. After the therapy, patient outcome was evaluated by improvement of Nurick functional scale or ASIA Classification.⁸ [38.1%] patients had recovered, therapeutic failure was defined in 6 [28.6%] patients, persistent was 7 patients and 8 patients better symptoms after a month of specific treatment.

Discussion

Pyogenic spondylodiscitis is an uncommon disease. The annual incidence of disease ranges from 0.2 to 2.0 cases per 100,000 inhabitants. Although rare, pyogenic spondylodiscitis is the main manifesta-

Table 5.1 Comparative data between outcome and different value of ESR & CRP

Clinical	Different value of Mean ESR (mm/hr)	Different value of Mean CRP (mg/L)
Improvement	8.9	6.8
Not improvement	4.79	6.29
<i>P</i> value	.048	.876

Table 5.2 Laboratory data : Mean of ESR,CRP

	Preoperative: Mean	Postoperative :Mean	<i>P</i> value
ESR (mm/hr)	85.5	78.6	.449
CRP (mg/L)	110	52	.041

Table 6 Treatment data and level of involvement

Patient No	Location	Operative treatment	Medical treatment
1	C	corpectomy C3-4 with drainage and fixation	Ceftriaxone
2	C	ACCF C3-6 with occiput to T1 posterior fixation	Tazocin
3	C	ACCF C6-7	Cefazolin
4	T	T7-10 laminectomy and corpectomy T8-9 with posterior fixation with PCD	Cefazolin
5	C	ACCF C6	ceftazidime+vancomycin
6	C	ACCF C3-4	Cloxacillin
7	C	Transoral odontoiodectomy with laminectomy C2-4 and C0-5 fixation	Cloxacillin
8	C	ACCF C3-5 with C2-6 posterior fixation	Cefotaxine
9	C	ACDF C3-7 with corpectomy C4	Ceftriaxone
10	multiple	ACCF C5 and laminectomy T6-7 T9-12 L2-5 with PCD	Ceftriaxone
11	L	Partial laminectomy L2,L5 with debridement	Ceftazidime
12	T	Laminectomy T7-9 with ACCF C5-6	Levofloxacin
13	C	Laminectomy C3,5,7	Ceftriaxone
14	L	Laminectomy L4-5	Cefazolin
15	multiple	Laminectomy C7,T3,T8-9	Cefazolin
16	L	corpectomy L4-5 with posterior fixation	Fosfomycin
17	L	Laminectomy L2-3	Cefazolin
18	C	ACCF C3-4 with ACDF C5-6	Ceftriaxone
19	multiple	ACCF C2-5 with laminectomy T6-7,9-12 L2-5 with PCD	Levofloxacin
20	C	ACCF C3-4	Cefazolin
21	C	ACCF C4-5	Meropenem

tion of hematogenous osteomyelitis in patients age over 50 years^{9,10} in our series 76% of our patients were older than 50 years, mean age of nearly 62 years and represents 37.5% of patients whom older than 50 years have hematogenous source.

Most of the patients with pyogenic spondylodiscitis is associated with an disease [such as Diabetis Mellitus, Chronic renal failure,cancer, cirrhosis] or condition that suppress the immune system (e.g. alcoholism, I.V. drug abuse, trauma). DM is the most common disease as a factor in 33.3% of cases.¹¹ Only 28.6% of patients have no predisposing factor. We

observe similar finding; 7 patients [33.3%] had DM, one patient had chronic renal failure and two patients had cirrhosis. The symptom of spondylodiscitis are non-specific. Back or neck pain is very common, but up to 19% of patients may be pain-free. Fever is less commonly presented and occurs in only about half of patients.^{12,13}

In Safak et al.'s study¹⁴, back pain was the most common symptom, with 90.7% of patients reporting back pain. In the same study, fever was present in 28.9% of patients, and in 12.1% of patients, varying degrees of neurological deficits (weakness or mild dys-

esthesia) were seen. In our study, back pain, neck pain, fever, and neurologic abnormalities were found in 8 (38.1%), 13 (61.9%), 10 (47.6%), and 20 (95.2%) patients [Table 2], respectively. In patients whom have not clinical neck pain related with improvement outcome in significantly.[P value.046] [Table 7]

Pyogenic spondylodiscitis was more evenly distributed among lumbar, thoracic, and cervical disc spaces, although the lumbar disc spaces were still the most frequently involved.¹⁵ The foci in the vertebral column were located in the cervical area in 22% of the patients, the thoracic area in 23%, and the lumbosacral area in 55%.¹⁶ In our study, 4 (19%) patients had pyogenic spondylodiscitis in the lumbar region, 2 [9.5%] is thoracic, 12 [57.1%] is cervical. All of cases, 25% are associated with epidural abscesses.¹⁷ In this review, 20 [95%] patients had epidural abscesses.

A rise in ESR and CRP is seen over 90% of patients.¹⁸⁻²⁰ ESR is a sensitivity marker for infection but lacks specificity. In our study found in 100% was evaluated ESR, 95.2% patients have raised CRP level. Decrease of postoperative ESR was related with clinical improvement [P value.048]. In postoperative condition, CRP was differed from preoperative condition in

significantly [P value.041].

Concerning the therapeutic strategy for spondylodiscitis, there is no clear consensus.^{21,22} Antibiotics without surgery seem to be the best treatment for spondylodiscitis.²³ Surgery is reserved for decompression of neural structure, especially with associated spinal epidural abscess or compression by reactive granulation tissue. Although an emergency operation is of course necessary when the symptoms are progressing rapidly, it is desirable to evaluate the nature, that pyogenic or tuberculosis, as accurately as possible.^{22,24} In our study, all of case, operative treatment is performed to eradicate the infection, definite tissue culture, restore and preserve the structure and function of the spine, and to alleviate pain.^{5,14}

A detailed review of surgical management in this study. Surgery can improve clinical outcome, all of complete cord patients had improvement after surgical decompression. Although incomplete cord patient, 10[62.5%] of 16 patients were improved but were not significantly [Table 8]. All of patients in this study revealed greater improvement in with surgical decompression that showed better or persistent ASIA score after surgical decompression [Table 9]. Better ASIA

Table 7 Relation between clinical neck pain and improvement outcome.

			Improvement		Total
			no	Yes	
neck_pain	no	Count	0	8	8
		% within neck_pain	0.0%	100.0%	100.0%
	yes	Count	6	7	13
		% within neck_pain	46.2%	53.8%	100.0%
Total	Count	6	15	21	
		% within neck_pain	28.6%	71.4%	100.0%

Table 8 Result of treatment between complete cord and incomplete cord patients.**complete_cord * improvement Crosstabulation**

			improvement		Total
			no	yes	
complete_cord	incomplete	Count	6	10	16
		% within complete_cord	37.5%	62.5%	100.0%
		% within improvement	100.0%	66.7%	76.2%
		% of Total	28.6%	47.6%	76.2%
	complete	Count	0	5	5
		% within complete_cord	0.0%	100.0%	100.0%
		% within improvement	0.0%	33.3%	23.8%
		% of Total	0.0%	23.8%	23.8%
Total		Count	6	15	21
		% within complete_cord	28.6%	71.4%	100.0%
		% within improvement	100.0%	100.0%	100.0%
		% of Total	28.6%	71.4%	100.0%

P value.262

Table 9 ASIA score condition at before and after operative treatment.

		ASIA_post					Total
		A	B	C	D	E	
ASIA_pre	A	3	2	0	0	0	5
	B	0	0	3	1	0	4
	C	0	0	7	0	2	9
	D	0	0	0	1	1	2
	E	0	0	0	0	1	1
Total		3	2	10	2	4	21

Table 10 Result of treatment between complete cord and incomplete cord patients.

			Improvement		
			Total	no	Yes
instrument	No	Count	0	5	5
		% within improvement	0.0%	33.3%	23.8%
	Yes	Count	6	10	16
		% within improvement	100.0%	66.7%	76.2%
Total		Count	6	15	21
		% within improvement	100.0%	100.0%	100.0%

P value.262

score in 9 patients and persistent ASIA in 12 patients.

Debridement and instrumentations were performed in 16 cases of this study for instability due to disc and bone destruction and erosion. Instrumentation after debridement has gained wide acceptance in the setting of concomitant infection. Several retrospective studies revealed greater improvement in patients with posterior instrumentation than in those without instrumentation.^{25,26} In this study patients with instrumentation was improvement better than without instrumentation for 2 times [Table 10]. In this study, however, the instrumentation did need to revised for 1 patients [No: 7]. In no:7 had occipital screw pullout and revised occipital screws wiring was performed, Fortunately the instrumentation did not contained local infection.

The overall attributable mortality varies across reports but probably stands between 2 and 11%.^{19,27} Between 0 and 16% of patients experience recurrence of infection, particularly those who are immunosuppressed.^{27,28}

In all cases of this series, appropriate antibiotics in reference to sensitivity were administrated, and improvement was noted. However, the death of 2 patients was due to the other severe systemic illnesses and upper airway obstruction.

Limitation of this study is less sample size and have not comparable with nonoperative treatment or conservative group

Conclusion

Pyogenic spondylodiscitis remains an uncommon diagnosis. Pyogenic spondylodiscitis should be suspected in people having pain and local tenderness in the spinal region with rise in infalammatory param-

eters in blood. Early diagnosis is a major challenge. The most common bacterium was *Staphylococcus* species, but there were not still a greater number of patients in this study. Operative treatment can improve outcome and improve or persist motor function in moderate to severely neurological deficit patient. Therefore, antibiotics therapy should be start after diagnosis with surgical decompression that effective treatment, it is important to determine improvement of outcome. Limitation of data is lack of uncontrolled study.

References

1. Friedman JA, Maher CO, Quast LM. Spontaneous disc space infections in adults. *Surg Neurol* 2002; 57:81–86.
2. Sapico FL, Montgomerie JZ. Pyogenic vertebral osteomyelitis: report of nine cases and review of the literature. *Rev Infect Dis* 1979;1:754–76.
3. Kapeller P, Fazekas F, Krametter D, et al. Pyogenic infectious spondylitis: clinical, laboratory and MRI features. *Eur Neurol* 38:94–98.
4. Hopkinson N, Stevenson J, Benjamin S. A case ascertainment study of septic discitis: clinical, microbiological and radiological features. *QJM* 2001; 94:465–70.
5. Gouliouris T, Aliyu SH, Brown NM. Spondylodiscitis: update on diagnosis and management. *J Antimicrob Chemother* 2010;65:11–24.
6. Genevay S. Spondylodiscite infectieuse. *Rev Med Suisse* 2006;57:715–20.
7. Modic MT, Feiglin DH, Piraimo DW, et al. Vertebral osteomyelitis: assessment using MR. *Radiology* 1985;157:157–66.
8. Nurick S. The pathogenesis of spinal cord disorder associated with cervical spondylosis. *Brain* 1972;95:87–100.
9. Jensen AG, Espersen F, Skinhøj P, et al. Increasing frequency of vertebral osteomyelitis following *Staphylococcus aureus* bacteraemia in Denmark 1980–

1990. *J Infect* 1997;34:113-8.

10. Espersen F, Frimodt-Møller N, Thamdrup Rosdahl V, et al. Changing pattern of bone and joint infections due to *Staphylococcus aureus*: study of cases of bacteremia in Denmark, 1959-1988. *Rev Infect Dis* 1991;13:347-58.

11. Darouiche RO, Hamill RJ, Greenberg SB, Weathers SW: Bacterial spinal epidural abscess. Review of 43 cases and literature survey. *Medicine (Baltimore)* 1992;71:369-85.

12. Torda AJ, Gottlieb T, Bradbury R. Pyogenic vertebral osteomyelitis: Analysis of 20 cases and review. *Clin Infect Dis* 1995;20:320-8.

13. Sakkas LI, Davas EM, Kapsalaki E, Boulbou M, Makaritsis K, Alexiou I, et al. Hematogenous spinal infection in central Greece. *Spine* 2009;34:513-8.

14. Safak Kaya, Serdar Ercan, Spondylodiscitis: evaluation of patients in a tertiary hospital. *J Infect Dev Ctries* 2014;8(10):1272-6.

15. Parra JLC, Martin ASA, Martinez-Aedo AL, Ivanez IS, Agreda E, Stern LLD. Management of infectious discitis. Outcome in one hundred and eight patients in a University Hospital. *Int Orthop* 2012;36:239-44.

16. Aagaard T, Roed C, Gragsted C, Skinhøj P. Microbiological and therapeutic challenges in infectious spondylodiscitis: a cohort study of 100 cases, 2006 - 2011. *Scand J Infect Dis* 2013;45:417-24.

17. Yasar K, Pehlivanoglu F, Cicek G, Sengöz G. The evaluation of the clinical, laboratory and the radiological findings of the fifty-five cases diagnosed with tuberculous, Brucellar and pyogenic spondylodiscitis. *J Neurosci Rural Pract* 2012;3:17-20.

18. Hadjipavlou AG, Mader JT, Necessary JT, Muffoletto AJ. Hematogenous pyogenic spinal infections and their surgical management. *Spine* 2000;25(13): 1668-79.

19. Lam KS, Webb JK. Discitis. *Hosp Med* 2004; 65(5) : 280-6.

20. Friedman JA, Maher CO, Quast LM, McClelland RL, Ebersold MJ. Spontaneous disc space infections in adult. *Surg Neurol* 2002;57:81-6

21. Carrega G, Arena S, Bartolacci V, Gavino D. Non-tubercular vertebral osteomyelitis: diagnosis and therapy of 45 patients from single center. *Infez Med* 2003;11:183-8.

22. Shunji A, Hiroshi D, Nobusuke K. Spondylodiscitis: diagnosis and treatment. *Surgical Neurology*; Volume 64, Issue 2, August 2005. p. 103-8.

23. Bhojraj S, Nene A. Lumbar and lumbosacral spondylodiscitis in adult. *J Bone Joint Surg Br* 2002; 84:530-4.

24. Ruiz Ruiz FJ, Martin Lorenzo B, Amores Arriaga A, Ruiz Laiglesia FJ, Hualde Enguita AM, Perez Calvo JI. Acute transverse myelopathy associated to *S.aureus* : a difficult differential diagnosis. *Neurologia* 2004; 19:130-3.

25. Hee HT, Majd ME, Holt RT, Pienkowski D. Better treatment of vertebral osteomyelitis using posterior stabilization and titanium mesh cages. *J Spinal Disord Tech* 2002;15:149-56.

26. Liljenqvist U, Lerner T, Bullmann V, Hackenberg L, Halm H, Winkelmann W. Titanium cages in the surgical treatment of severe vertebral osteomyelitis. *Eur Spine J* 2003;12:606-12.

27. Jimenez-Mejias JM, Colmenero J, et al. Postoperative spondylodiscitis: etiology, clinical findings, prognosis, and comparison with nonoperative pyogenic spondylodiscitis. *Clinical Infectious Diseases* 1999; 29:339-45.

28. Gillard J, Bouteille D, Varin S, Aseray N, Berthelot JM. Suspected disk space infection with negative microbiological tests-report of eight cases and comparison with documented pyogenic discitis. *Joint Bone Spine* 2005;72:156-62.

บทความปริทัศน์ (Review article)

แนวคิด Ideal closure line: เทคนิคในการหนีบหลอดเลือดสมองโป่งพอง Concept of ideal closure line: A clipping technique for cerebral aneurysms

กิติพร ศรีอมรรัตนกุล, พ.บ. ว.ว. ประสาทศัลยศาสตร์
นาแสง อัครอรรมาธโธ, พ.บ. ว.ว. ประสาทศัลยศาสตร์
สมเกียรติ วงศ์สุริยนันท์, พ.บ. ว.ว. ประสาทศัลยศาสตร์

หน่วยประสาทศัลยศาสตร์ ภาควิชาศัลยศาสตร์
คณะแพทย์ศาสตร์วชิรพยาบาล มหาวิทยาลัยนวมินทราธิราช

บทนำ

การรักษาโดยการผ่าตัดเปิดกะโหลกศีรษะเพื่อหนีบหลอดเลือดสมองโป่งพอง (craniotomy for aneurysm clipping) เป็นการรักษามาตรฐานที่ใช้กันมาตั้งแต่ปี 1950 โดยมีวัตถุประสงค์เพื่อป้องกันการแตกข้ามโดยการใช้ clip ไปหนีบที่คอของ aneurysm (aneurysm neck) เพื่อไม่ให้มีเลือดไหลเรียนเข้าไปใน aneurysm^{1,2} การหนีบ aneurysm neck ด้วยคลิป (aneurysm clip) มีวัตถุประสงค์เพื่อปิดปากทาง (orifice) ของ aneurysm ซึ่งมีลักษณะสามมิติทำให้เกิดแนวเส้นตรงหรือเส้นโค้งซึ่งบน parent artery ซึ่งเกิดจาก blade ของ aneurysm clip เรียกแนวเส้นที่เกิดขึ้นใหม่นี้ว่า “Closure line”¹ แต่อย่างไรก็ตาม การหนีบหลอดเลือดสมองโป่งพองด้วย clip พบร่วม 5.9-42% มีส่วนของหลอดเลือดสมองโป่งพองเหลืออยู่หลังการผ่าตัด (aneurysm remnant) โดยพบว่า aneurysm ของ anterior cerebral artery เป็นตำแหน่งที่พบ aneurysm remnant ปอยที่สุด³⁻⁵ Aneurysm remnant มีโอกาสมีขนาดใหญ่ขึ้นและแตกได้แม้ว่าจะมีขนาดเพียง 1-2 มิลลิเมตรเท่านั้น^{5,6} จากการตรวจติดตามด้วย cerebral

angiography ในระยะยาวพบว่า 25% ของ aneurysm remnant ที่มีขนาดเล็ก (dog-ear remnant) และ 75% ของ aneurysm remnant ที่มีขนาดใหญ่ (broad-based remnant) มีขนาดใหญ่ขึ้น⁷ Aneurysm remnant อาจสามารถอุดได้ด้วยวิธีการสวนหลอดเลือด (endovascular techniques)⁸ แต่การผ่าหนีบหลอดเลือดสมองโป่งพองให้หมดในการผ่าตัดครั้งแรกโดยไม่เหลือ aneurysm remnant หรือเหลือให้น้อยที่สุดเท่าที่จะทำได้โดยต้องไม่ทำให้เกิดการอุดตันต่อ parent artery เป็นสิ่งที่ดีที่สุด²

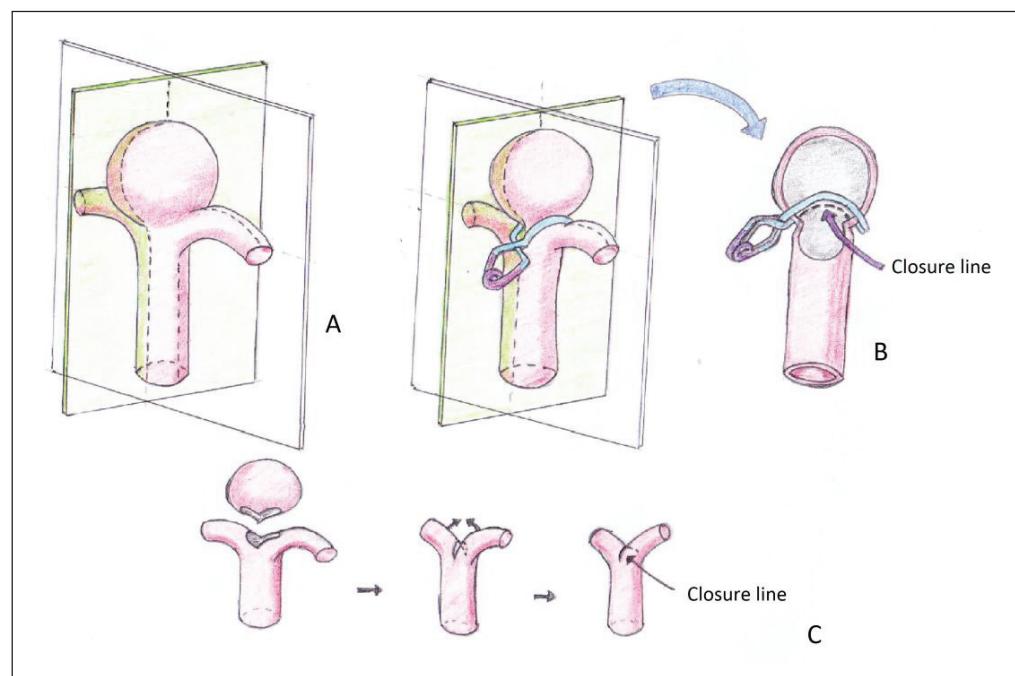
มีหลายบทความที่พยายามบรรยายถึงวิธีการในการหนีบหลอดเลือดสมองโป่งพองด้วย clip เพื่อให้สามารถกำจัดหลอดเลือดสมองโป่งพองให้หมดหรือเหลือ aneurysm remnant ให้น้อยที่สุด แต่ก็ยังไม่มีรูปแบบหรือแนวคิดที่ชัดเจน ส่วนใหญ่มักอาศัยประสบการณ์จากการผ่าตัดในการตัดสินใจสีคลิปแบบต่างๆ⁹⁻¹²

ในปี 2007 Ishikawa และคณะ¹³ ได้เสนอเทคนิคในการหนีบหลอดเลือดสมองโป่งพองโดยใช้แนวคิด closure line (concept of closure line) และ application angle โดยพิจารณาจากรูปร่าง (morphology) ของ aneurysm

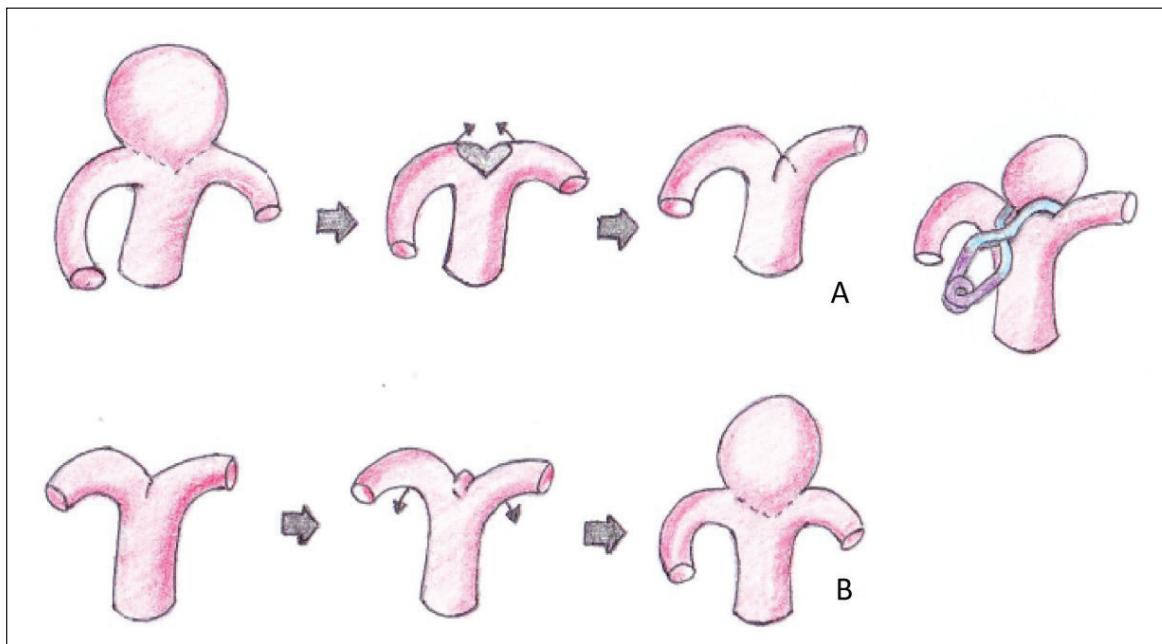
neck เพื่อเป็นแนวทางในการหนีบ aneurysm ได้อย่างเห็นจะด้วยไม่เหลือ neck remnant หรือเหลือหอยที่สุด^{1,13,14}

แนวคิด Ideal closure line (Concept of ideal closure line)

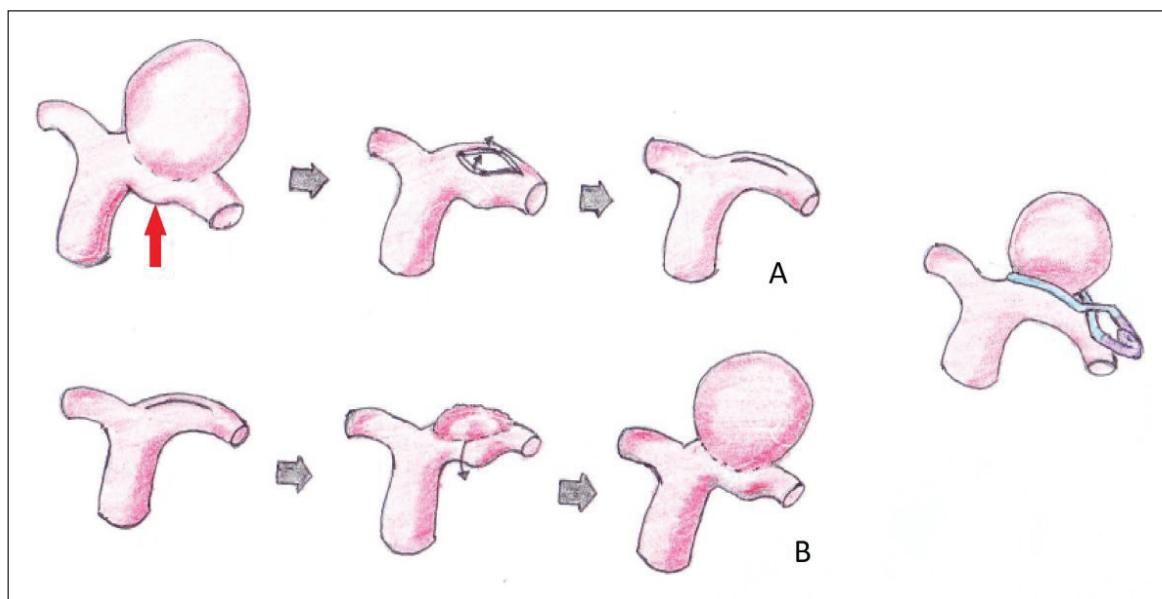
“Closure line” คือ แนวเส้นที่เกิดบน parent artery หลังจากการใส่คลิปซึ่งเกิดจาก clip blade ส่องข้างประกับกัน¹³ (รูปที่ 1)


ลักษณะรูปทรงของ aneurysm (aneurysm configuration) แบ่งออกได้เป็น 3 ประเภท คือ¹³

1. **Bifurcation type aneurysm** มีปากทาง (orifice) อยู่ตรงกลางระหว่างแขนงหลอดเลือดทั้งสอง (efferent arteries) เกิดจากร่องโคงตรงกลางทางแยกของแขนงหลอดเลือด (bifurcation) โดยร่องโคงนี้อยู่ในแนวตั้งจาก (perpendicular) กับแนวของแขนงหลอดเลือด (efferent artery) ซึ่งก็คือ ideal closure line ของ aneurysm ชนิดนี้

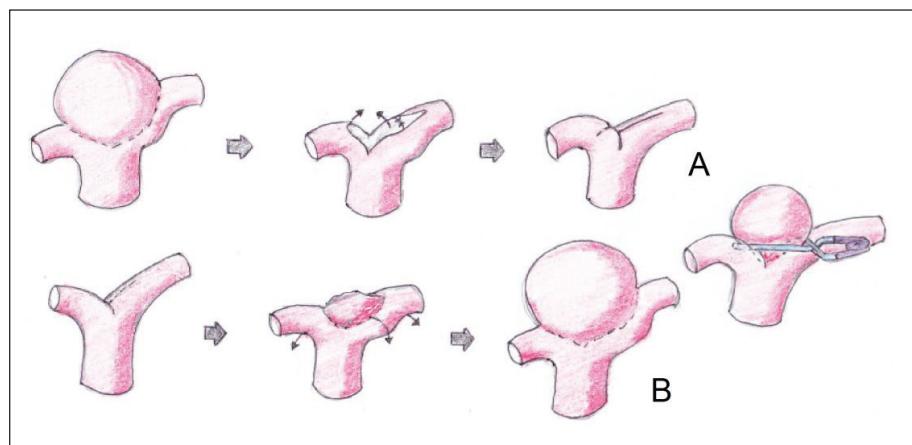

การปิด orifice ด้วยคลิปในแนว ideal closure line จะได้ลักษณะของหลอดเลือดเหมือนกับก่อนจะมี aneurysm (รูปที่ 2)

2. **Trunk type aneurysm** มีปากทาง (orifice) อยู่บนแขนงหลอดเลือดข้างหนึ่ง (one of the efferent arteries) ideal closure line คือเส้นตรงในแนวขานาน (parallel) กับแขนงหลอดเลือดที่มี aneurysm นั้น การปิด orifice ด้วยคลิปในแนว ideal closure line ทำให้ bulging บน efferent artery หายไปเหมือนกับสภาพก่อนมี aneurysm (รูปที่ 3) และไม่เกิดการหักอ (kinking) ของ efferent artery ที่มี aneurysm อญ্ত (รูปที่ 7)

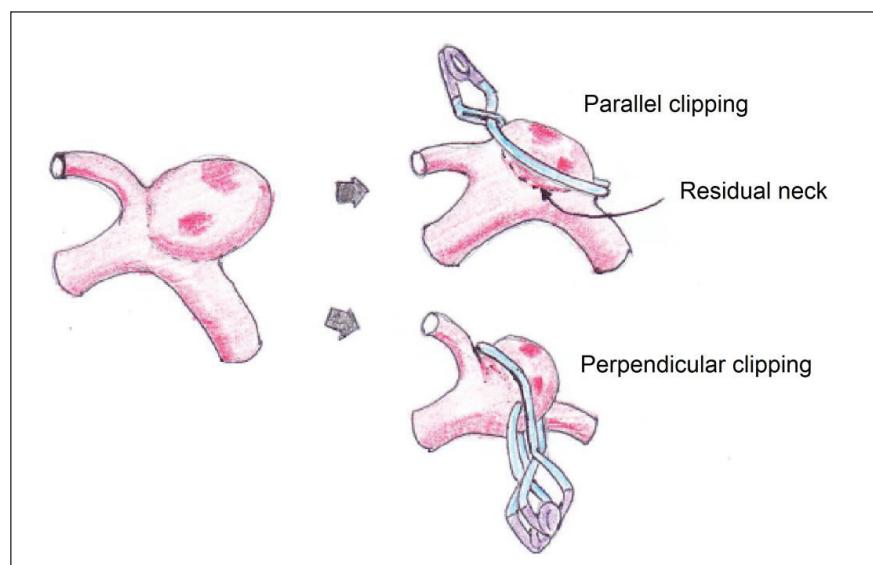

3. **Combined type aneurysm** มีลักษณะรวมกันของ bifurcation type และ trunk type คือ มีปากทาง (orifice) อยู่บนทั้งร่องระหว่างแขนงหลอดเลือดและบนแขนงหลอดเลือด ideal closure line จึงเป็นรูป “T” โดยส่วนหัวของตัวอักษรคือร่องตรงกลางระหว่างแขนงหลอดเลือด และส่วนล่างของตัวอักษรอยู่บนแขนงหลอดเลือดข้าง

รูปที่ 1 ภาพ bifurcation type aneurysm ร่วมกับ plane ในแนวขานานกับ efferent artery (plane ใส) และ plane ในแนวตั้งจากกับ efferent artery (plane สีเขียว) (รูป A) ภาพ aneurysm หลังใส่คลิปใน plane แนวตั้งจากกับ efferent artery และดึง closure line (รูป B) ภาพ aneurysm หลังจากตัด aneurysm ออกจาก parent artery ในแนว closure line (ตัดแปลงจาก Kamiyama H et al.¹⁵)

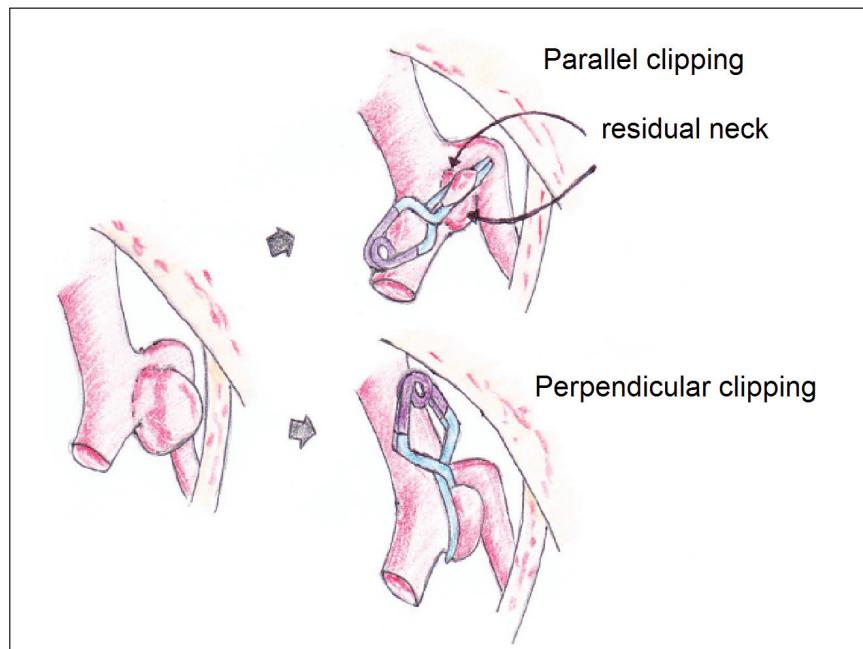
รูปที่ 2 Bifurcation type aneurysm แสดงปากทาง (orifice) ซึ่งอยู่ต壤กลางระหว่างแขนงหลอดเลือดทั้งสอง (efferent arteries) และการปิด orifice ด้วยคลิปในแนว ideal closure line จะได้ลักษณะของหลอดเลือดเหวี่ยงกับก้อนจะมี aneurysm (รูป A) และ ideal closure line นี้เป็นจุดกำเนิดของ aneurysm ชนิดนี้ (รูป B) (ดัดแปลงจาก Ishikawa T et al.¹, Ishikawa T¹³, Kamiyama H et al.¹⁵)

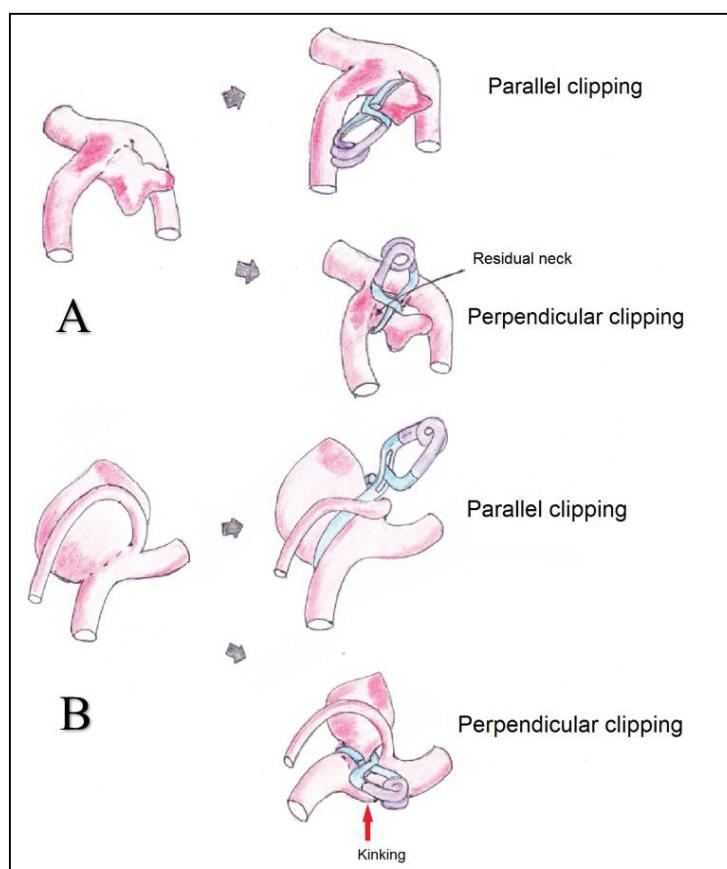


รูปที่ 3 Trunk type aneurysm แสดงปากทาง (orifice) ซึ่งอยู่บนแขนงหลอดเลือดข้างหนึ่ง (one of the efferent arteries) และการปิด orifice ด้วยคลิปในแนว ideal closure line ในแนวขนาน (parallel) กับแขนงหลอดเลือดที่มี aneurysm ทำให้ bulging บน efferent artery (ลูกศรเสี้ยดง) หายไปเหมือนกับสภาพก่อนมี aneurysm (รูป A) และ ideal closure line นี้เป็นจุดกำเนิดของ aneurysm ชนิดนี้ (รูป B) (ดัดแปลงจาก Ishikawa T et al.¹, Ishikawa T¹³, Kamiyama H et al.¹⁵)


หนึ่งที่มี aneurysm โดยอยู่ในแนวข่านกับแขนงหลอดเลือดนั้น แต่ในทางปฏิบัติไม่สามารถใส่คลิปให้ closure line เป็นรูปตัว “T” ได้ จึงแนะนำให้ใส่คลิปในแนวเฉียงกับแขนงหลอดเลือดแทน (oblique clip) (รูปที่ 4)

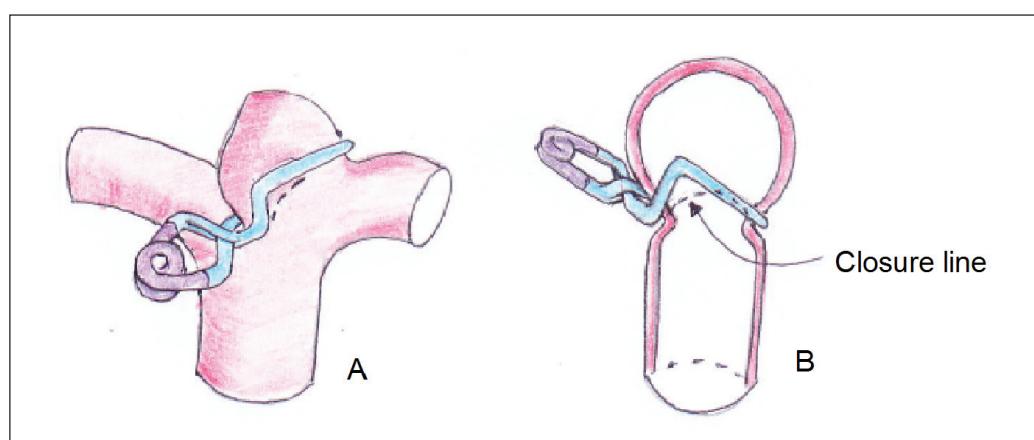
การใส่คลิปในแนวอื่นที่ไม่ใช่ ideal closure line จะทำให้เหลือ aneurysm remnant ไม่มากก็น้อย (รูปที่ 5, 6, 7)


เนื่องจาก ideal closure line ของ bifurcation type และ combined type aneurysm มีลักษณะเป็นเส้นโค้ง (curve line) การใส่คลิปจึงจำเป็นต้องทำให้ closure line เป็นเส้นโค้งเพื่อไม่ให้เหลือ dog-ear remnant วิธีแรกคือ การใช้คลิปตัวเดียว (single clip technique) โดยอาจใช้คลิปโค้งหรือ shank clip (crankshaft clip: clip blade งอเป็นมุมจากคล้ายรูปขั้นบันได) (รูปที่ 8) ซึ่งมักจะไม่

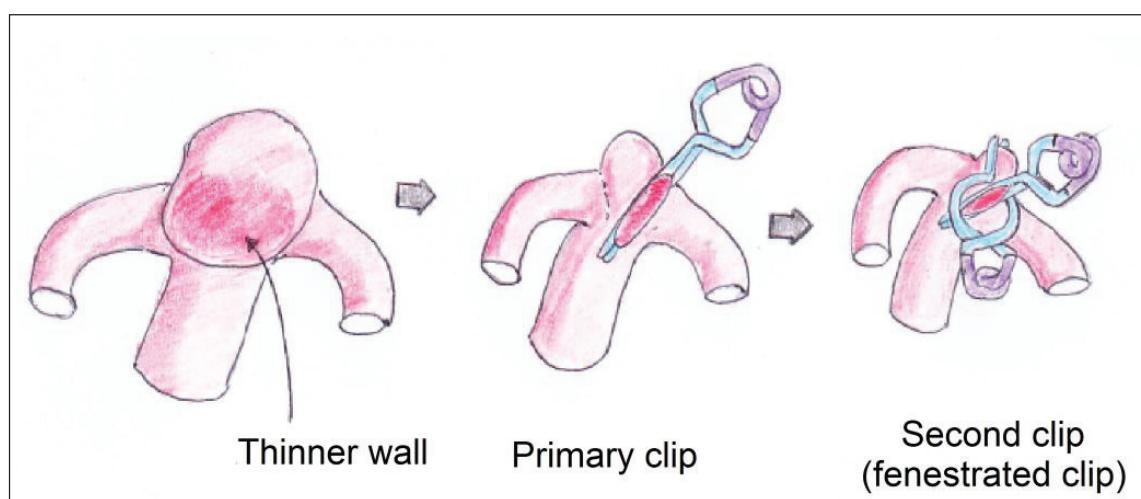

รูปที่ 4 Combined type aneurysm แสดงปากทาง (orifice) อยู่บนทั้งร่องระหว่างแขนงหลอดเลือดและบนแขนงหลอดเลือดเหตุ่อน เป็นรูป “T” ซึ่งเป็น ideal closure line และการปิด orifice ด้วยคลิปในแนว ideal closure line ไม่สามารถทำได้ในทางปฏิบัติ จึงแนะนำให้ใส่คลิปในแนวเฉียงกับแขนงหลอดเลือดแทน (oblique clip) (รูป A) แนว ideal closure line รูป “T” เป็นจุดกำเนิดของ aneurysm ชนิดนี้ (รูป B) (ตัดแปลงจาก Ishikawa T et al.¹, Ishikawa T¹³, Kamiyama H et al.¹⁵)

รูปที่ 5 Bifurcation type aneurysm of MCA bifurcation ใส่คลิปแบบ parallel clipping จะเหลือ residual neck บริเวณ parent artery ถ้าใส่คลิปแบบ perpendicular clipping (ideal closure line) จะไม่เหลือ residual neck (ตัดแปลงจาก Kamiyama H et al.¹⁵)

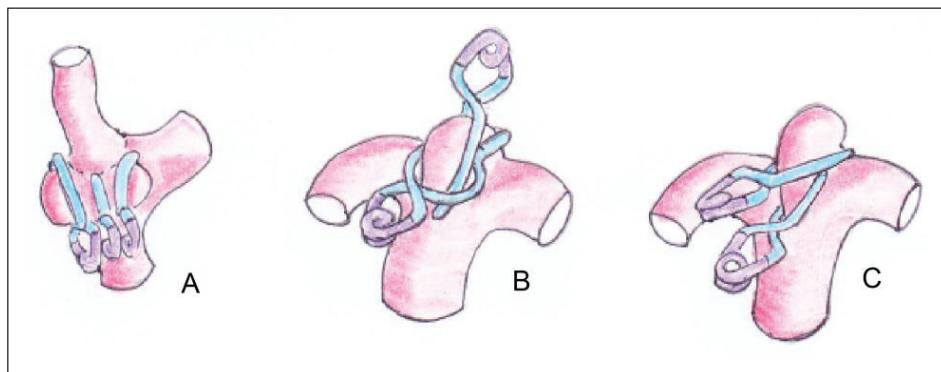
รูปที่ 6 Bifurcation type aneurysm of right internal carotid-posterior communicating artery (IC-PC) aneurysm ใช้คลิปแบบ parallel clipping จะเหลือ residual neck บริเวณ parent artery ถ้าใช้คลิปแบบ perpendicular clipping (ideal closure line) จะไม่เหลือ residual neck (ดัดแปลงจาก Kamiyama H et al.¹⁵)

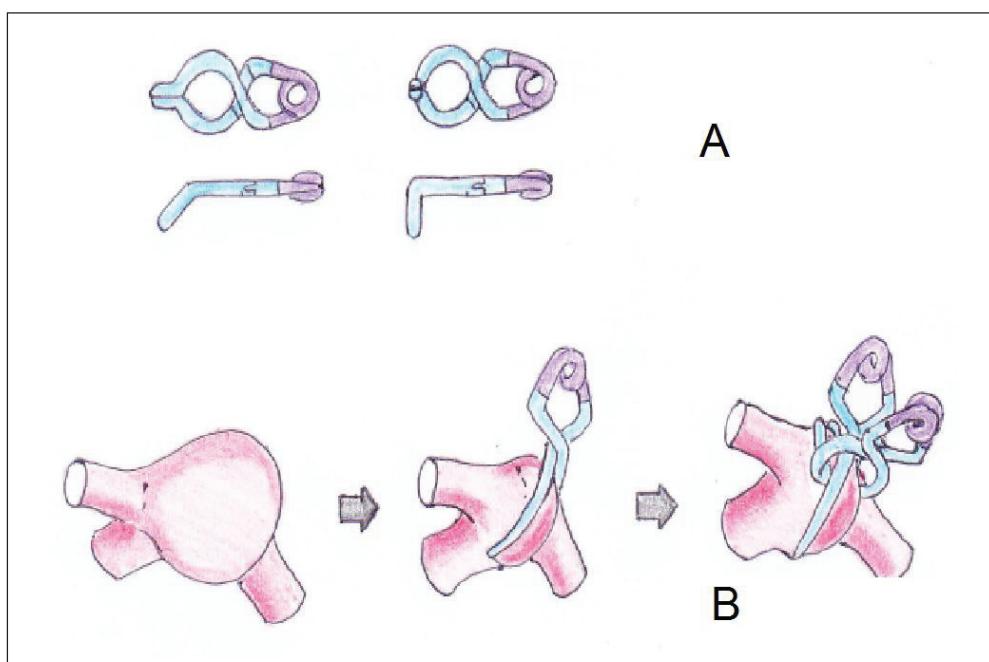


รูปที่ 7 Trunk type aneurysm of MCA bifurcation ใช้คลิปทึบแบบ perpendicular clipping จะเหลือ residual neck (รูป A ล่าง) Trunk type aneurysm ขนาดใหญ่ ใช้คลิปทึบแบบ perpendicular clipping จะเกิดการหักงอ (kinking) ของ efferent artery ที่มี aneurysm อยู่ (รูป B ล่าง) (ดัดแปลงจาก Kamiyama H et al.¹⁵)


พอดีกับรูปร่างของ aneurysm neck ซึ่งมีรูปทรงหลากร้าย อีกวิธีที่ดีกว่าคือ การใส่คลิปหลาดตัว (multiple clip technique) ใส่เรียงกัน (tandem clipping) โดยใช้คลิปตัวแรก (primary clip) ซึ่งมักจะเป็นคลิปโค้ง หนึบส่วนใหญ่ของ aneurysm neck ด้านที่ผนังบางกว่าก่อน (thinner wall) และใช้คลิปอีกตัว (second clip) หนึบต่อจากคลิปตัวแรกเพื่อหนีบ dog-ear remnant ให้ป้องกันการฉีกขาด ของด้านที่ผนังบาง (รูปที่ 9) วิธีนี้สามารถเลือกรูปทรง ของคลิปและจัดเรียงคลิปให้ได้มุ่งและรูปร่างที่เหมาะสม ได้หลากร้าย¹ (รูปที่ 10)

การใส่คลิปหลาดตัวเรียงกัน (tandem clipping) มี หลากร้าย เช่น under clipping, back-to-back clipping หรือ cross clipping (รูปที่ 10) โดยใช้ fenestrated clip ซึ่งมี ทั้ง fenestrated standard-clip และ fenestrated mini-clip (รูปที่ 11) ซึ่งออกแบบเฉพาะมาเพื่อเก็บ dog-ear remnant¹⁶


“Closure plane” คือ ระนาบของ closure line ที่เป็น เส้นโค้ง (curve closure line) แบ่งออกเป็น axial, coronal และ sagittal plane (รูปที่ 12) และ ภาพแสดง closure plane ของ anterior communicating artery aneurysm

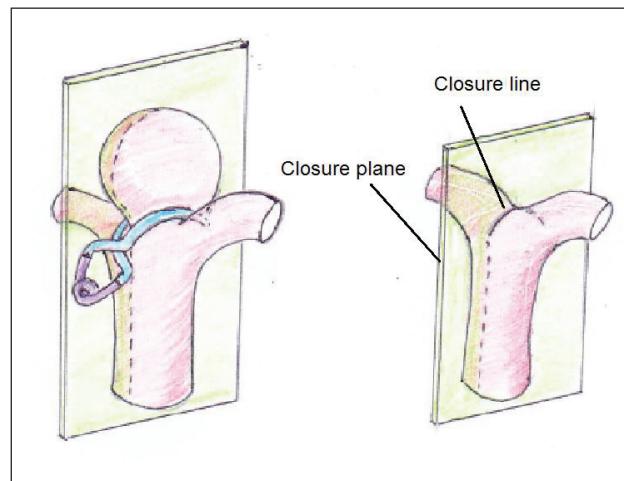

รูปที่ 8 Crankshaft (Shank) clip ตรงบริเวณ clip blade งอเป็นมุกฉากคล้ายรูปขั้นบันได ซึ่งแนว closure line กับรูปร่างของ crankshaft clip ไม่พอดีกัน (ดัดแปลงจาก Ishikawa T et al.¹)

รูปที่ 9 การใส่คลิปหลาดตัวเรียงกัน (tandem clipping) โดยใช้คลิปตัวแรก (primary clip) หนึบส่วนใหญ่ของ aneurysm neck ด้านที่ผนังบางกว่าก่อน (thinner wall) และใช้คลิปอีกตัว (second clip) หนึบต่อจากคลิปตัวแรกเพื่อหนีบ dog-ear remnant (ดัดแปลงจาก Ishikawa T et al.¹)

รูปที่ 10 การใส่คลิปแบบ tandem clipping back-to-back clipping (รูป A) cross clipping (รูป B) และ under clipping (รูป C) (ดัดแปลงจาก Ishikawa T et al.¹)

รูปที่ 11 Fenestrated mini-clip 2 ชนิด (รูป A) การใส่ fenestrated mini-clip เพื่อเก็บ dog-ear remnant (รูป B) (ดัดแปลงจาก Ota N et al.¹⁶)

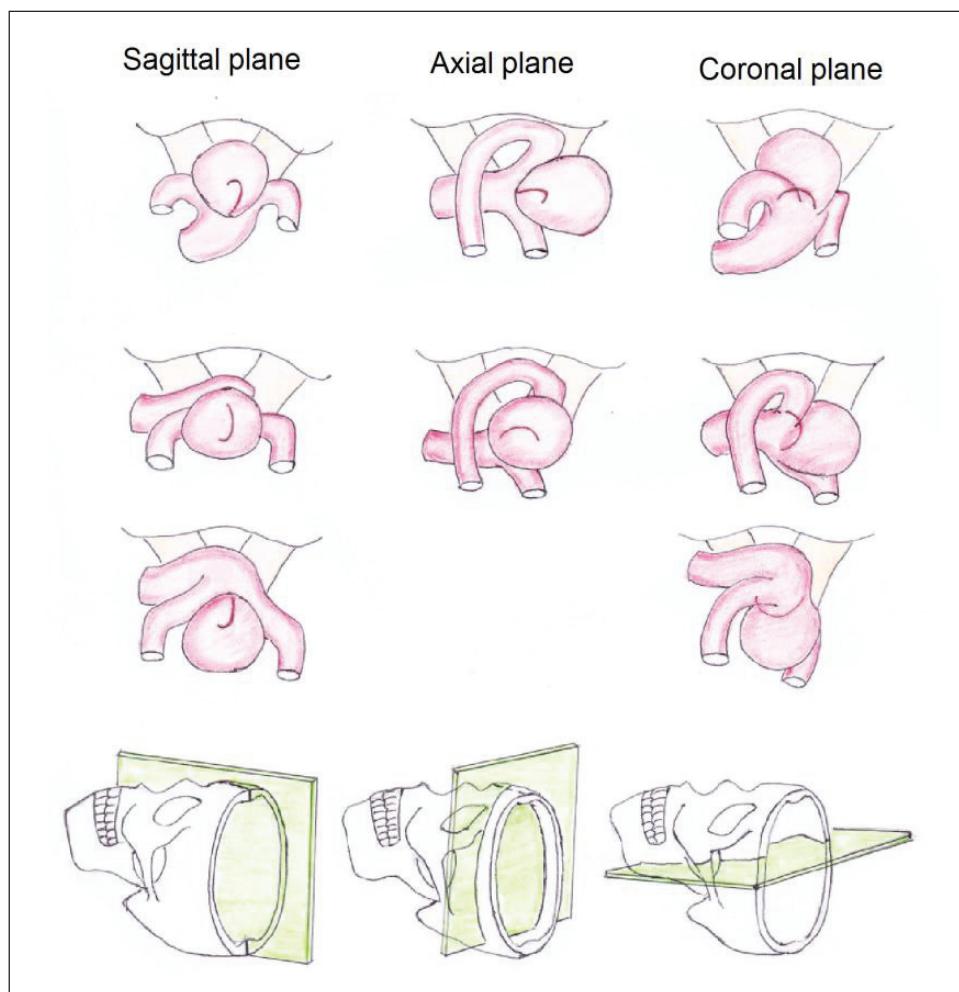
(รูปที่ 13)¹⁴

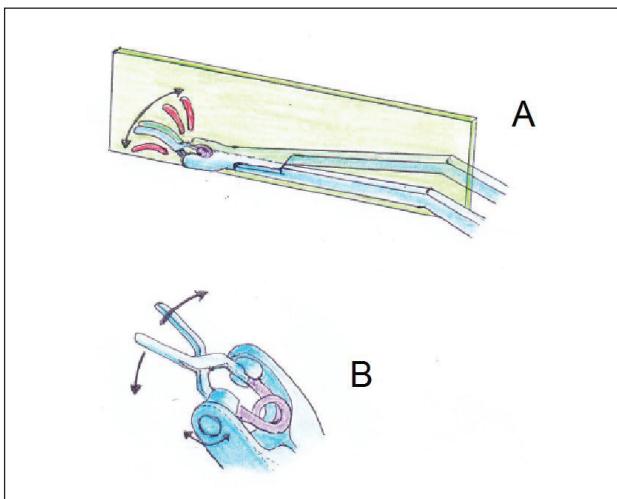

“Application plane” คือ ระนาบบน clip applier ที่เกิดจากผิวด้านในของ clip blade ที่ประกอบกัน ซึ่งเป็นแนวระนาบเดียวกับ Closure plane (รูปที่ 14)¹⁴

“Application angle” คือ ทิศทางในการใส่ clip applier เพื่อหนีบ aneurysm¹³

ในบาง surgical approach การใส่คลิปในบางมุม เพื่อให้ได้ closure plane ในบาง plane ไม่สามารถทำได้จริง เนื่องจากถูกจำกัดด้วยขอบกะโหลกศีรษะ เช่น ใน

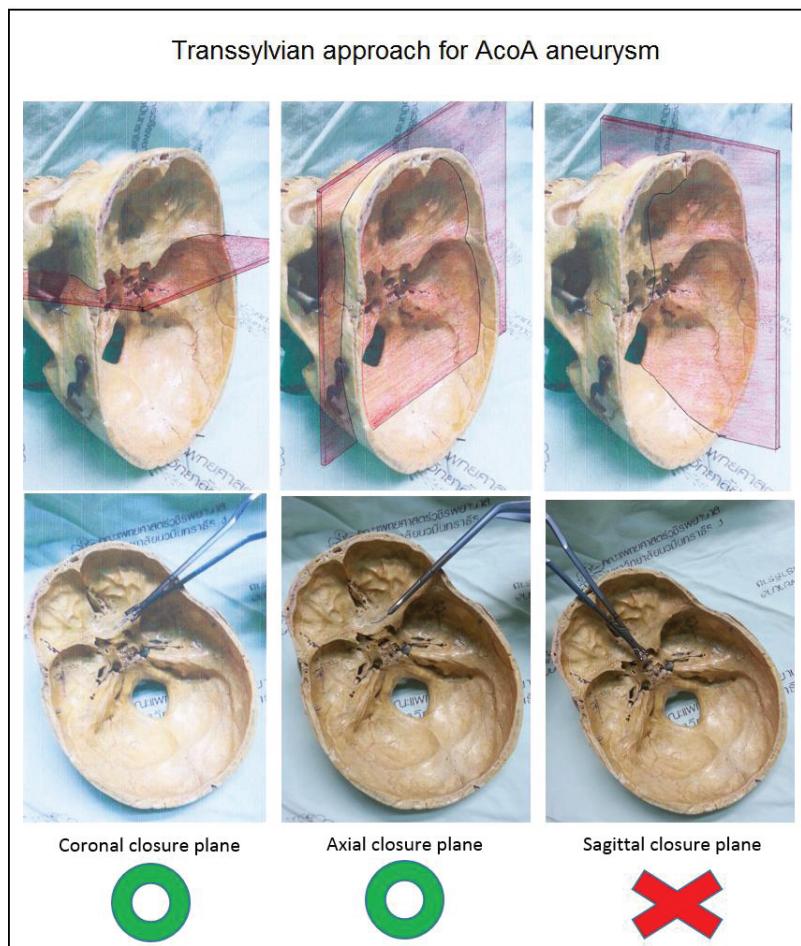
การใส่คลิปเพื่อหนีบ anterior communicating artery (AcoA) aneurysm ผ่านทาง Transsylvian approach ไม่สามารถใส่คลิปใน sagittal plane ได้ (รูปที่ 14) และ Basal interhemispheric approach ไม่สามารถใส่คลิปใน coronal plane ได้ (รูปที่ 15)¹⁴


Nakayama พบว่า anterior communicating artery aneurysm เป็น bifurcation type 90.6%, trunk type 5.6%, และ combined type 3.8% โดยใน bifurcation type พบว่ามี ideal closure plane ในแนว sagittal 66%, axial

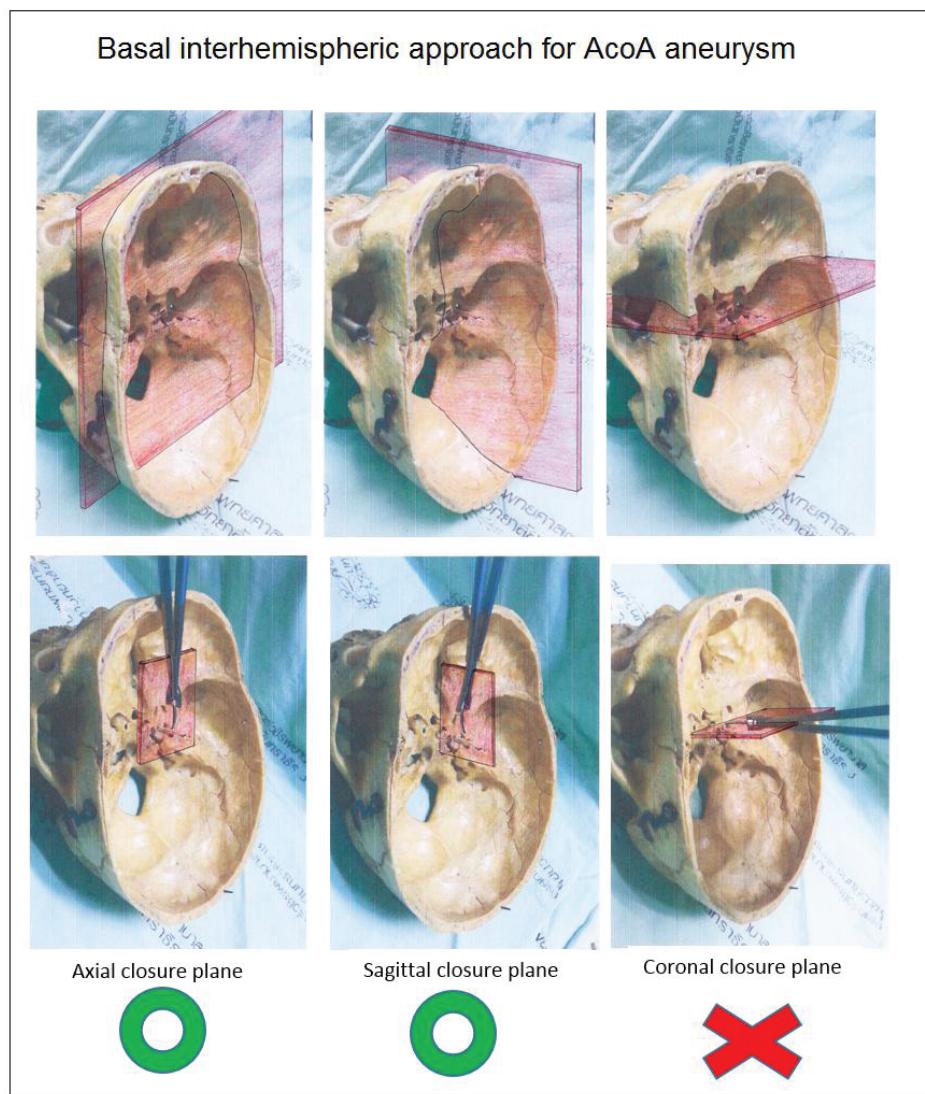

รูปที่ 12 Closure plane คือ ระนาบของ closure line ที่เป็นเส้นโค้ง (curve closure line) (ดัดแปลงจาก Kamiyama H et al.¹⁵)

16.1% และ coronal 17.9% แสดงให้เห็นว่า ส่วนใหญ่ของ anterior communicating artery aneurysm มี closure plane ในแนว sagittal plane การใช้ transsylvian approach จะไม่สามารถใส่คลิปให้ closure plane อยู่ในแนวนี้ ได้แต่สามารถทำได้ด้วย interhemispheric approach¹⁴

Ishikawa และคณะพบว่า middle cerebral aneurysm เป็น bifurcation type 76.5%, trunk type 17.6%, และ combined type 5.9% โดยใช้ transsylvian approach สามารถใส่คลิปในแนว ideal closure line ได้ 92%¹ การคลิป middle cerebral aneurysm โดยผ่านทาง transsylvian approach นั้นสามารถใส่คลิปได้ในแนว axial และ coronal plane ได้ไม่ยาก แต่การใส่คลิปในแนว sagittal plane



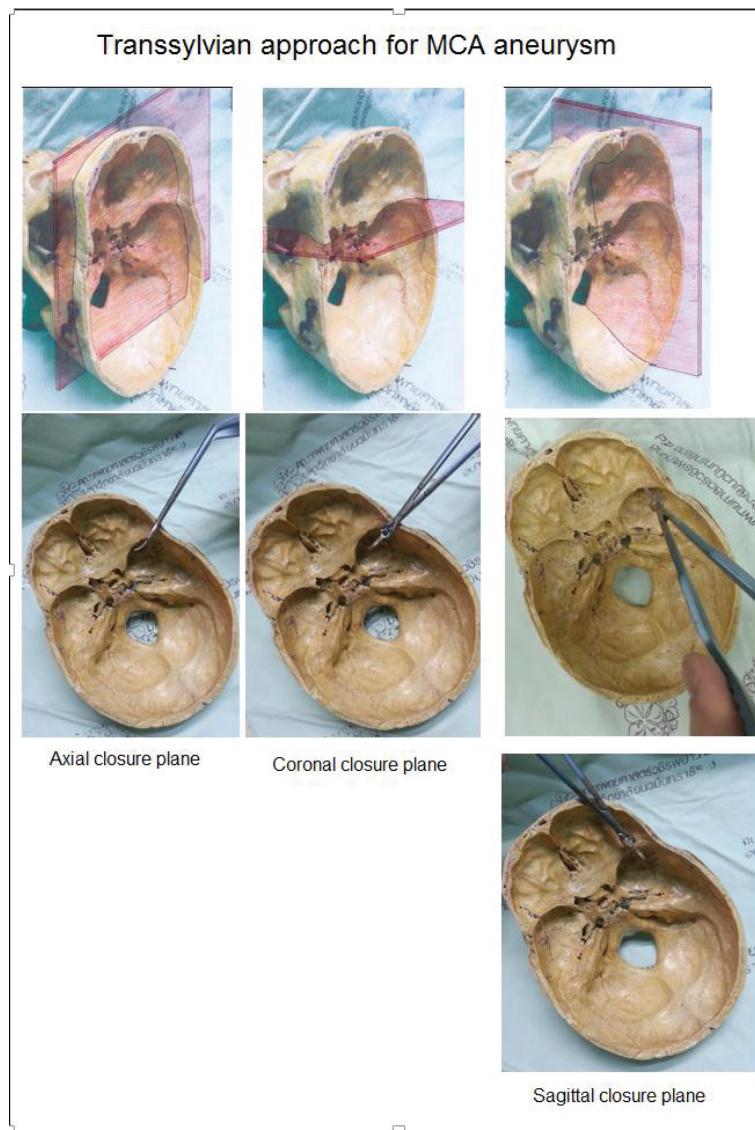
รูปที่ 13 Closure plane ของ anterior communicating artery aneurysm มองจาก basal interhemispheric approach (ดัดแปลงจาก Nakayama N¹⁴)



รูปที่ 14 Application plane คือ ระนาบบน clip applier ที่เกิดจากผิวด้านในของ clip blade ที่ประกับกัน (รูป A) clip applier ชนิดที่สามารถถอดประกอบคลิปได้เพื่อให้สามารถใส่คลิปได้หลายมุมใน application plane เดิม (รูป B) (ดัดแปลงจาก Nakayama N¹⁴)

นั้นอาจทำได้ยากหากถูกจำกัดด้วย bony exposure ที่เล็กหรือการเปิด sylvian fissure ที่ไม่กว้างพอ (รูปที่ 16) ในทำนองเดียวกับการหัน internal carotid artery (ICA) aneurysm โดยผ่านทาง transsylvian approach การใส่คลิปในแนว sagittal plane ที่ทำได้ค่อนข้างยากเช่นเดียวกัน การใส่คลิปให้ได้ ideal closure line ต้องพิจารณาถึง closure plane และ application angle ซึ่งบางครั้งการใส่ clip applier ถูกจำกัดด้วยขอบกระโหลกศีรษะของแต่ละ surgical approach จึงมีความจำเป็นต้องมีการ mobilize ตัว parent artery หรือแขนงหลอดเลือด (efferent artery) เพื่อเปลี่ยนแนว closure plane บน aneurysm neck ให้สามารถใส่ clip applier เพื่อวางคลิปให้ closure plane อญญในแนวที่เหมาะสมที่สุดได้ การแยก aneurysm ออกจากหลอดเลือดและเนื้อสมองที่อยู่รอบ (complete dissec-

รูปที่ 14 Transsylvian approach เพื่อหัน anterior communicating artery (AcoA) aneurysm สามารถใส่คลิปในแนว coronal และ axial plane ได้ แต่ไม่สามารถใส่คลิปในแนว sagittal plane ได้ (ดัดแปลงจาก Nakayama N¹⁴)

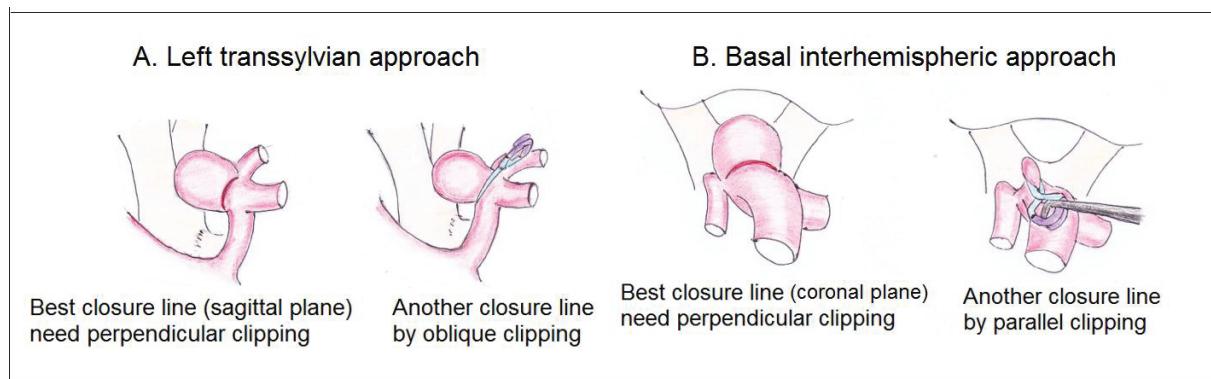


รูปที่ 15 Basal interhemispheric approach เพื่อหันบี anterior communicating artery (AcoA) aneurysm สามารถใส่คลิปในแนว axial และ sagittal plane ได้ แต่ไม่สามารถใส่คลิปในแนว coronal plane ได้ (ดัดแปลงจาก Nakayama N¹⁴)

tion) และ surgical approach ที่เหมาะสมและกว้างพอ มีส่วนสำคัญอย่างมากในการใส่คลิปในแนว ideal closure line ในกรณีที่ไม่สามารถใส่คลิปในแนว ideal closure line ได้ ให้พิจารณาใส่คลิปในแนวที่ใกล้เคียงกับ ideal closure line ให้มากที่สุดเพื่อให้เหลือ aneurysm remnant น้อยที่สุด^{1,15} (รูปที่ 17)¹⁵

การผ่าตัดเพื่อหันบี anterior communicating artery aneurysm โดยส่วนใหญ่จะทำผ่าน pterional approach ไม่ว่าจะเป็น subfrontal approach หรือ transsylvian approach ซึ่งเหมาะสมกับ aneurysm ที่มี closure plane ในแนว coronal หรือ axial plane (พบประมาณ 34% ของ aneu-

rysm ชนิดนี้¹⁴) การพิจารณาเลือกข้างที่จะผ่าตัดมีส่วนสำคัญที่จะทำให้สามารถใส่คลิปได้อย่างเหมาะสม ในปี 2009 Chen และคณะได้เสนอแนวทางการพิจารณาเลือกข้างในการผ่าตัด anterior communicating artery aneurysm ผ่าน pterional transsylvian approach โดยในกรณีที่ aneurysm dome ซึ่งไปด้านข้าง (lateral) ขึ้นบน (superior) หรือด้านหน้า (anterior) แนะนำให้ผ่าตัดข้างที่ ipsilateral A2 อยู่หลังกว่า contralateral A2 (side of open A2 fork) กรณีที่ aneurysm dome ซึ่งไปด้านหลัง (posterior) แนะนำให้ผ่าตัดข้างที่ ipsilateral A2 อยู่หน้ากว่า contralateral A2 (side of closed A2 fork)

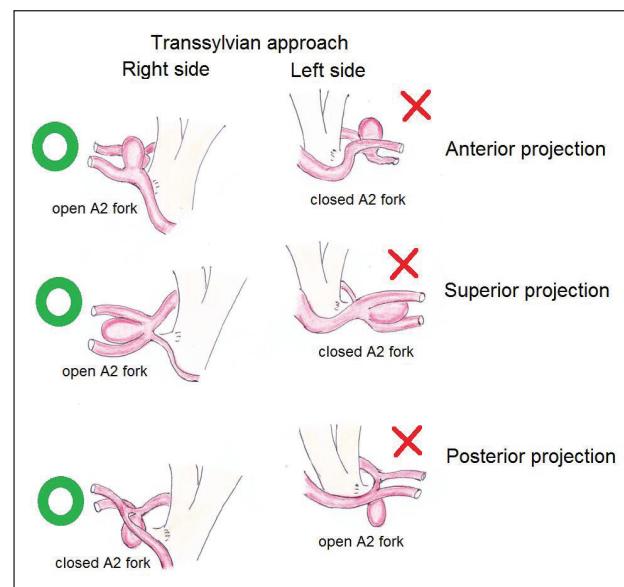

รูปที่ 16 การใส่คลิปเพื่อหันเป็น middle cerebral artery (MCA) aneurysm โดยผ่านทาง transsylvian approach ในแนว axial, coronal และ sagittal plane (ดัดแปลงจาก Nakayama N¹⁴)

เนื่องจากสามารถเห็น A2 ได้ทั้งสองข้าง (รูปที่ 18) และกรณี aneurysm dome ชี้ลงล่าง (inferior) แนะนำให้ผ่าตัดข้างที่ dominant A1 เนื่องจากการ retract frontal lobe อาจทำให้เกิด premature rupture¹⁷

ด้วยเทคโนโลยีทางรังสีวิทยาที่พัฒนาไปอย่างมากในปัจจุบัน เช่น 3D-CT angiography (3D-CTA) หรือ 3D-digital subtraction angiography (3D-DSA) ทำให้สามารถเห็นรูปร่างลักษณะของ aneurysm ได้อย่างชัดเจนก่อนการผ่าตัด ร่วมกับการนำ concept of ideal closure line มาใช้เป็นแนวทางในการวางแผนก่อนทำการผ่าตัด ช่วยให้ทราบก่อนการผ่าตัดว่า ideal closure line และ clo-

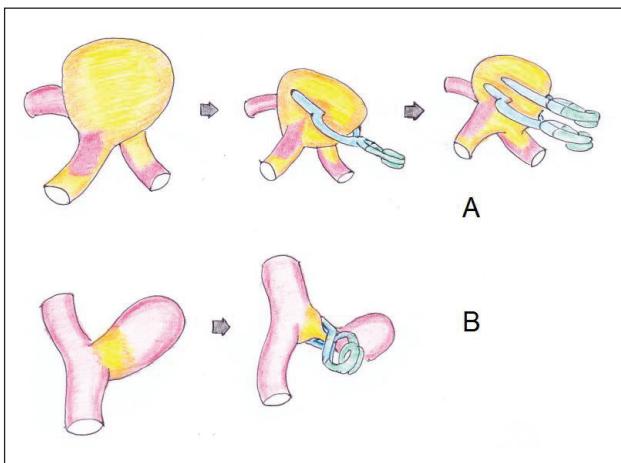
sure plane อยู่ในแนวใด application angle อยู่ในมุมใดทำให้สามารถเลือก surgical approach และชนิดของคลิปที่เหมาะสมกับ aneurysm นั้นๆได้ ช่วยให้การผ่าตัดเป็นไปอย่างมีประสิทธิภาพมากที่สุด เทคนิคในการหันหลอดเลือดสมองโป่งพองในบางกรณี

ในกรณีที่ aneurysm wall หรือหลอดเลือดโดยรอบมีบางส่วนส่วนที่มี atherosclerotic change การใส่คลิปควรหลีกเลี่ยงการหันบริเวณดังกล่าวเพื่อป้องกันภาวะสมองขาดเลือดอันเกิดจากลิมเลือดหลุดลอย (emboli) และ การอุดตันของ parent artery หรือแขนงหลอดเลือด (efferent artery)^{1,18} (รูปที่ 19)

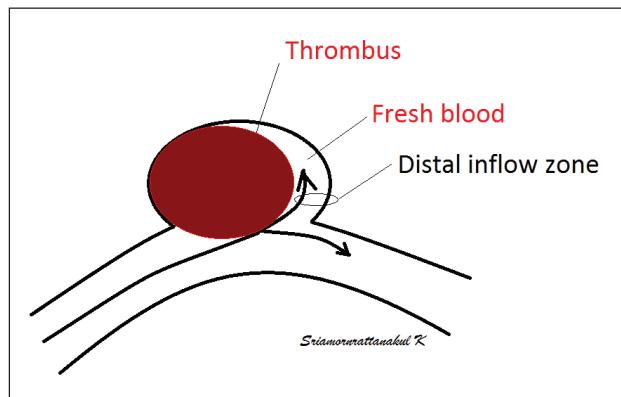


รูปที่ 17 Left transsylvian approach เพื่อคลิป anterior communicating artery aneurysm ซึ่งมี ideal closure line อยู่ในแนว sagittal plane ซึ่งไม่สามารถใส่คลิปใน plane นี้ได้โดยใช้ approach นี้ จึงใส่คลิปใน plane ที่ใกล้เคียงกับ ideal closure line มากที่สุด (oblique clipping) (รูป A) การคลิป anterior communicating artery aneurysm ที่มี ideal closure line ในแนว coronal plane โดยผ่านทาง basal interhemispheric approach ซึ่งไม่สามารถใส่คลิปใน plane นี้ได้โดยใช้ approach นี้ จึงใส่คลิปใน plane ที่ใกล้เคียงกับ ideal closure line มากที่สุด (parallel clipping) (รูป B) (ตัดแปลงจาก Nakayama N¹⁴)

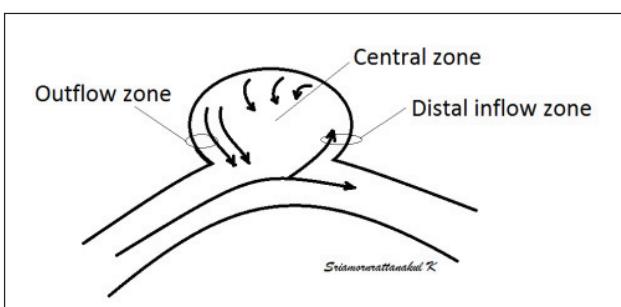
จากการศึกษาการไหลเวียนเลือดในตัวหลอดเลือดสมองโป่งพอง (hemodynamics of aneurysm) พบว่า จุดที่เลือดไหลเวียนเข้าไปใน aneurysm (inflow zone) นั้น คือ distal neck of aneurysm ซึ่งเป็นส่วนที่ได้รับ hemodynamic stress มากที่สุด จึงเป็นบริเวณที่ aneurysm จะมีการขยายขนาดขึ้นได้อีก (aneurysm enlargement zone) ส่วนจุดที่เลือดไหลเวียนออกจาก aneurysm (outflow zone) คือ proximal neck ได้รับ hemodynamic stress ไม่มาก ส่วนบริเวณตรงกลางของ aneurysm dome เป็นบริเวณที่มีการไหลของเลือดต่ำ¹⁹⁻²¹ (รูปที่ 20)

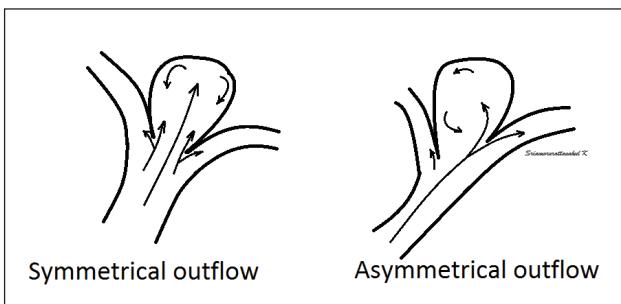

Aneurysm ชนิดที่อยู่ระหว่างแขนงหลอดเลือดสองแขนง (bifurcation aneurysm) พบว่า ถ้าแขนงหลอดเลือดทั้งสองทำมุมไม่เท่ากัน (asymmetrical outflow) inflow zone จะอยู่บริเวณ distal neck และเป็นบริเวณที่มี hemodynamic stress มากที่สุด ถ้าแขนงหลอดเลือดทำมุมเท่ากัน (symmetrical outflow) inflow มีทิศทางผ่าน aneurysm neck ไปที่ dome โดยตรง hemodynamic stress บริเวณนี้จะมากหรือน้อยขึ้นกับลักษณะของการไหลในตัว aneurysm แต่บริเวณที่มี hemodynamic stress มากคือ aneurysm neck ทั้งสองด้าน (รูปที่ 21)¹⁹

ในกรณีที่อัตราส่วนพื้นที่ของ aneurysm dome ต่อ



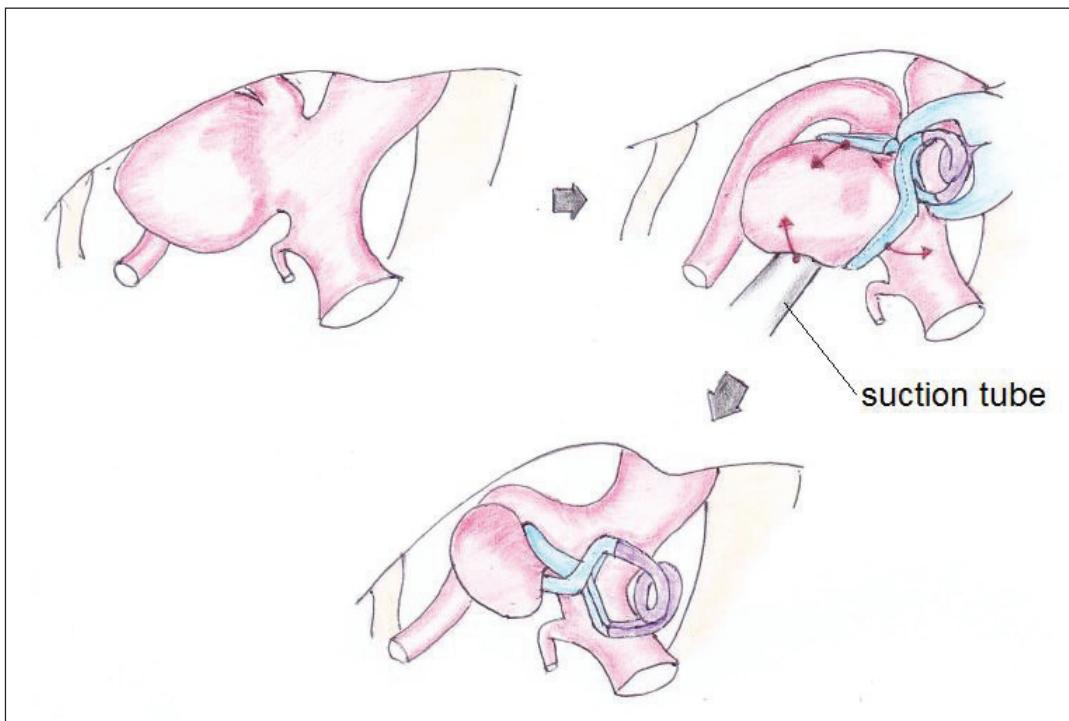
รูปที่ 18 การผ่าตัดเพื่อหนีบ anterior communicating artery aneurysm โดยผ่านทาง Transsylvian approach ทางด้านขวาหรือซ้าย ใน aneurysm ที่มี projection ต่างๆ (ตัดแปลงจาก Chen L et al.¹⁷)


พื้นที่ของ aneurysm neck มีค่ามากจะเกิดการไหลเวียนเลือดที่ช้า (stagnant flow) ภายในตัว aneurysm ทำให้ aneurysm นี้มีโอกาสเกิดลิ่มเลือดภายใน (thrombotic aneurysm) ได้มาก โดยส่วนที่มีการไหลเวียนเลือดภายในตัว thrombotic aneurysm นั้นมักจะเป็น inflow zone²¹ (รูปที่ 22)


รูปที่ 19 การหดเป็น atherosclerotic aneurysm ที่มีลักษณะต่างๆ (รูป A, B) ควรหลีกเลี่ยงการหดเป็นบริเวณที่มี atherosclerotic change (สีเหลือง) (ดัดแปลงจาก Sakarunchai I et al.¹⁸)

รูปที่ 22 การเกิด thrombotic aneurysm ส่วนที่มีการไหลเวียนเลือดจะอยู่ที่บริเวณ distal neck (ดัดแปลงจาก Bederson JB²¹)

รูปที่ 20 Hemodynamics ภายในใน aneurysm โดย inflow zone อยู่บริเวณ distal neck (ดัดแปลงจาก Bederson JB²¹)



รูปที่ 21 Hemodynamics ของ bifurcation aneurysm ถ้าเป็นชนิด asymmetrical outflow inflow zone บริเวณที่มี stress มากที่สุด จะอยู่ที่ distal neck ถ้าเป็นชนิด symmetrical outflow บริเวณที่มี stress มากที่สุด จะอยู่ที่ aneurysm neck ทั้งสองด้าน (ดัดแปลงจาก Bederson JB²¹)

จากความรู้เรื่อง hemodynamics ทำให้ทราบว่า ส่วน distal neck ของ aneurysm เป็นบริเวณที่ต้องให้ความสำคัญเป็นพิเศษที่จะต้องหดเป็นหมุดด้วยคลิป เพราะเป็นบริเวณที่ aneurysm มีการขยายขนาด²¹ โดยส่วน proximal neck ซึ่งมักมีแขนงของหลอดเลือดอยู่ ในบางกรณีที่ไม่สามารถหดส่วนนี้ได้หมุด เพราะจะทำให้แขนงหลอดเลือดนั้นอุดตัน การเหลือ proximal neck ไว้เพียงเล็กน้อยก็เป็นสิ่งจำเป็นเพื่อให้สามารถรักษาแขนงหลอดเลือดไว้ โดยโอกาสที่ aneurysm จะขยายขนาดจากบริเวณนั้นไม่มากนัก วิธีการคือ การบิดคลิป (rotation) ให้ clip blade ด้าน distal neck กดลงบน distal neck ให้ชิดมากที่สุด อาจใช้ suction tube ช่วยดัน aneurysm dome เพื่อให้เกิดแรงกระทำในแนวตรงข้าม (รูปที่ 23)¹⁵

สรุป

การใช้คลิปหดหลอดเลือดสมองโป่งพองให้หมุดในการผ่าตัดเพียงครั้งเดียวเป็นสิ่งที่ดีที่สุด การที่จะทำเข็นนั้นได้ต้องมีความเข้าใจถึงลักษณะรูปทรงของหลอดเลือดที่โป่งพอง วิธีการใส่คลิปที่เหมาะสมในแต่ละแบบ และการไหลเวียนเลือดในตัวหลอดเลือดสมองโป่งพอง Ideal closure line เป็นแนวคิดที่เป็นรูปธรรมชัดเจนสามารถนำมาใช้เป็นแนวทางในการวางแผนก่อนผ่าตัด ใช้เลือก surgical approach และชนิดของคลิปที่เหมาะสม ทำให้

รูปที่ 23 การบิดคลิป (clip rotation) ให้ clip blade ต้าน distal neck กัดลงบน distal neck ให้ชิดมากที่สุด โดยใช้ suction tube ช่วยดัน aneurysm dome เพื่อให้เกิดแรงกระทำในแนวตรงข้าม (ตัดแปลงจาก Kamiyama H et al.¹⁵)

สามารถหันบล็อกเลือดสมองโป่งพองได้อย่างมีประสิทธิภาพมากที่สุด

เอกสารอ้างอิง

1. Ishikawa T, Nakayama N, Moroi J, Kobayashi N, Kawai H, Muto T, Yasui N. Concept of ideal closure line for clipping of middle cerebral artery aneurysms—technical note. *Neurol Med Chir (Tokyo)*. 2009 Jun;49(6): 273–7; discussion 277–8.
2. Yasargil MG. Aneurysm clipping. 3 General operative techniques. In: Yasargil MG. *Microneurosurgery I*. Stuttgart, New York: Georg Thieme Verage, 1989: p. 245–264.
3. Kamitani H, Masuzawa H, Kanazawa I, Kubo T. Bleeding risk in unruptured and residual cerebral aneurysms—angiographic annual growth rate in nineteen patients. *Acta Neurochir (Wien)* 1999;141(2): 153–9.
4. Sindou M, Acevedo JC, Turjman F. Aneurysmal remnants after microsurgical clipping: classification and results from a prospective angiographic study (in a consecutive series of 305 operated intracranial aneurysms). *Acta Neurochir (Wien)* 1998;140(11): 1153–9.
5. Jabbarli R, Pierscianek D, Wrede K, Dammann P, Schlamann M, Forsting M, et al. Aneurysm remnant after clipping: the risks and consequences. *J Neurosurg*. 2016 Feb 12:1–7. [Epub ahead of print]
6. Lin T, Fox AJ, Drake CG. Regrowth of aneurysm sacs from residual neck following aneurysm clipping. *J Neurosurg* 1989 Apr;70(4):556–60.
7. David CA, Vishteh AG, Spetzler RF, Lemole M, Lawton MT, Partovi S. Late angiographic follow-up review of surgically treated aneurysms. *J Neurosurg* 1999 Sep;91(3):396–401.
8. Rabinstein AA, Nichols DA. Endovascular coil embolization of cerebral aneurysm remnants after incomplete surgical obliteration. *Stroke* 2002 Jul;33(7):1809–15.
9. Dashti R, Hernesniemi J, Niemelä M, Rinne J, Porras M, Lehecka M, et al. Microneurosurgical manage-

ment of middle cerebral artery bifurcation aneurysms. *Surg Neurol* 2007 May;67(5):441-56.

10. Hernesniemi J, Dashti R, Lehecka M, Niemelä M, Rinne J, Lehto H, et al. Microneurosurgical management of anterior communicating artery aneurysms. *Surg Neurol* 2008 Jul;70(1):8-28; discussion 29.

11. Lehecka M, Dashti R, Laakso A, van Popta JS, Romani R, Navratil O, et al. Microneurosurgical management of anterior choroid artery aneurysms. *World Neurosurg* 2010 May;73(5):486-99.

12. Lehecka M, Dashti R, Romani R, Celik O, Navratil O, Kivipelto L, et al. Microneurosurgical management of internal carotid artery bifurcation aneurysms. *Surg Neurol* 2009 Jun;71(6):649-67.

13. Ishikawa T. Clipping techniques for cerebral aneurysms. Special considerations for closure line and application angle. *No shinkei Geka* 2007;17:804-814. [jpn]

14. Nakayama N. How to take closer line in the anterior communicating artery aneurysm clipping - closure plane concept and approach selection. *No shinkei Geka* 2009;19(9):998-1010. [jpn]

15. Kamiyama H, Houkin K. Microsurgery of cerebral aneurysms. Tokyo: Nankodo; 2010. [jpn]

16. Ota N, Tanikawa R, Noda K, Tsuboi T, Kamiyama H, Tokuda S. The efficiency of the new Yasargil titanium fenestrated mini-clips for ideal clipping of a cerebral aneurysm. *Surg Neurol Int* 2015; 6(Suppl 21):S553-S559.

17. Chen L, Agrawal A, Kato Y, Karagiozov KL, Kumar MV, Sano H, et al. Role of aneurysm projection in "A2" fork orientation for determining the side of surgical approach. *Acta Neurochir (Wien)* 2009 Aug; 151(8):925-33; discussion 933.

18. Sakarunchai I, Kato Y, Yamada Y, Inamasu J. Ischemic Event and Risk Factors of Embolic Stroke in Atherosclerotic Cerebral Aneurysm Patients Treated with a New Clipping Technique. *J Stroke Cerebrovasc Dis* 2015 Nov;24(11):2497-507.

19. Munarriz PM, Gómez PA, Paredes I, Castaño-Leon AM, Cepeda S, Lagares A. Basic principle of hemodynamics and cerebral aneurysms. *World Neurosurg*. 2016 Apr;88:311-9.

20. Wakhloo AK, Lieber BB, Sandhu JS, Gounis MJ. Flow dynamics in aneurysm. In: Le Roux PD, Winn RH, Newell DW, editors. *Management of Cerebral Aneurysms*. Philadelphia: Saunders; 2004. p. 99-120.

21. Bederson JB. Hemodynamics and pathophysiology of giant intracranial aneurysms. In: Awad IA, Barrow DL, editors. *Giant intracranial aneurysms*. Illinois: Park Ridge; 1995. p. 13-22.