

ទាយបាប ការទាម្ចារទេសទិន ប្រវាំតីប្រការ

**WEEKLY EPIDEMIOLOGICAL
SURVEILLANCE REPORT**

การสืบสานวัฒนธรรม

อาหาร เป็นพิษ - สระบุรี

Food poisoning - Saraburi

ระหว่างวันที่ 1 - 19 พฤศจิกายน 2529 มีผู้ป่วยอาการอุจจาระร่วง

ป่วยท้อง คลื่นไส้ อาเจียน ไปรับการรักษาที่โรงพยาบาลสระบุรี 122 ราย เป็นชายร้อยละ 65 (79/122) หญิงร้อยละ 35 (43/122) ผู้ป่วยร้อยละ 21 (26/122) ถูกรับไว้รักษาในโรงพยาบาลร้อยละ 83 (101/122) มีที่อยู่ในเขตอำเภอเมืองสระบุรี ร้อยละ 55 (56/101) ของผู้ป่วยที่อยู่อำเภอเมือง มาจากตำบลปากเพรียวซึ่งตั้งอยู่ในเขตเทศบาลผลการเพื่อจากอุจจาระผู้ป่วย 50 ราย พบร่วร้อยละ 54 ขึ้นเชื้อ *V. parahaemolyticus* จากการศึกษาวิธี case control พนว่ากลุ่มผู้ป่วยและกลุ่มผู้ไม่ป่วยมีประวัติการบริโภคอาหารเลือดหมูปูรุ้งไม่สุก ร้อยละ 75.0 (36/48) และ 37.9 (11/29) ตามลำดับ ($p < 0.01$) จากการส่งตรวจตัวอย่างอาหารที่เก็บจากตลาดสด 3 แห่งในเขตเทศบาลเมืองสระบุรี พนว่ามีการปนเปื้อนด้วยเชื้อ *V. parahaemolyticus* ในเลือดหมู ลูกชิ้นปลา และเกลือ เม็ดที่ใช้ผสมเลือดหมู จากข้อมูลทางระบาดวิทยาและผลการตรวจทางห้องชันสูตร บ่งชี้ว่า เลือดหมูที่ปูรุ้งไม่สุกเป็นสิ่งที่แพร่กระจายเชื้อโรคในการระบาดครั้งนี้ แต่ไม่สามารถระบุได้แน่ชัดว่า *V. parahaemolyticus* เชื้อไปปนเปื้อนในเลือดหมูได้อย่างไร ได้แนะนำเรื่องการสุขาภิบาลอาหารแก่ผู้ที่เกี่ยวข้อง และแนะนำประชาชนให้บริโภคอาหารที่ปูรุ้งสุกใหม่ ๆ

ผู้รายงาน

- ศูนย์ระบบวิทยาภาคกลาง จังหวัดราชบุรี
- สำนักงานสาธารณสุขจังหวัดสระบุรี
- โรงพยาบาลสระบุรี

Recommendations for Prevention of HIV Transmission in Health-Care Settings

U. S. Department of Health and Human Services
 Public Health Service
 Centers for Disease Control
 Atlanta, Georgia 30333

(ต่อจากฉบับที่แล้ว : Vol. 18 No. 37)

Precautions for Dialysis

Patients with end-stage renal disease who are undergoing maintenance dialysis and who have HIV infection can be dialyzed in hospital-based or free-standing dialysis units using conventional infection-control precautions (21). Universal blood and body-fluid precautions should be used when dialyzing all patients.

Strategies for disinfecting the dialysis fluid pathways of the hemodialysis machine are targeted to control bacterial contamination and generally consist of using 500-750 parts per million (ppm) of sodium hypochlorite (household bleach) for 30-40 minutes or 1.5%-2.0% formaldehyde overnight. In addition, several chemical germicides formulated to disinfect dialysis machines are commercially available. None of these protocols or procedures need to be changed for dialyzing patients infected with HIV.

Patients infected with HIV can be dialyzed by either hemodialysis or peritoneal dialysis and do not need to be isolated from other patients. The type of dialysis treatment (i.e., hemodialysis or peritoneal dialysis) should be based on the needs of the patient. The dialyzer may be discarded after each use. Alternatively, centers that reuse dialyzers—i.e., a specific single-use dialyzer is issued to a specific patient, removed, cleaned, disinfected, and reused several times on the same patient only—may include HIV-infected patients in the dialyzer-reuse program. An individual dialyzer must never be used on more than one patient.

Precautions for Laboratories[†]

Blood and other body fluids from all patients should be considered infective. To supplement the universal blood and body-fluid precautions listed above, the following precautions are recommended for health-care workers in clinical laboratories.

1. All specimens of blood and body fluids should be put in a well-constructed container with a secure lid to prevent leaking during transport. Care should be taken when collecting each specimen to avoid contaminating the outside of the container and of the laboratory form accompanying the specimen.
2. All persons processing blood and body-fluid specimens (e.g., removing tops from vacuum tubes) should wear gloves. Masks and protective eyewear should be worn if mucous-membrane contact with blood or body fluids is anticipated. Gloves should be changed and hands washed after completion of specimen processing.
3. For routine procedures, such as histologic and pathologic studies or microbiologic culturing, a biological safety cabinet is not necessary. However, biological safety cabinets (Class I or II) should be used whenever procedures are conducted that have a high potential for generating droplets. These include activities such as blending, sonicating, and vigorous mixing.
4. Mechanical pipetting devices should be used for manipulating all liquids in the laboratory. Mouth pipetting must not be done.
5. Use of needles and syringes should be limited to situations in which there is no alternative, and the recommendations for preventing injuries with needles outlined under universal precautions should be followed.

[†]Additional precautions for research and industrial laboratories are addressed elsewhere (22,23).

6. Laboratory work surfaces should be decontaminated with an appropriate chemical germicide after a spill of blood or other body fluids and when work activities are completed.
7. Contaminated materials used in laboratory tests should be decontaminated before reprocessing or be placed in bags and disposed of in accordance with institutional policies for disposal of infective waste (24).
8. Scientific equipment that has been contaminated with blood or other body fluids should be decontaminated and cleaned before being repaired in the laboratory or transported to the manufacturer.
9. All persons should wash their hands after completing laboratory activities and should remove protective clothing before leaving the laboratory.

Implementation of universal blood and body-fluid precautions for all patients eliminates the need for warning labels on specimens since blood and other body fluids from all patients should be considered infective.

Environmental Considerations for HIV Transmission

No environmentally mediated mode of HIV transmission has been documented. Nevertheless, the precautions described below should be taken routinely in the care of all patients.

Sterilization and Disinfection

Standard sterilization and disinfection procedures for patient-care equipment currently recommended for use (25,26) in a variety of health-care settings—including hospitals, medical and dental clinics and offices, hemodialysis centers, emergency-care facilities, and long-term nursing-care facilities—are adequate to sterilize or disinfect instruments, devices, or other items contaminated with blood or other body fluids from persons infected with blood-borne pathogens including HIV (21,23).

Instruments or devices that enter sterile tissue or the vascular system of any patient or through which blood flows should be sterilized before reuse. Devices or items that contact intact mucous membranes should be sterilized or receive high-level disinfection, a procedure that kills vegetative organisms and viruses but not necessarily large numbers of bacterial spores. Chemical germicides that are registered with the U.S. Environmental Protection Agency (EPA) as "sterilants" may be used either for sterilization or for high-level disinfection depending on contact time.

Contact lenses used in trial fittings should be disinfected after each fitting by using a hydrogen peroxide contact lens disinfecting system or, if compatible, with heat (78°C-80°C [172.4°F-176.0°F]) for 10 minutes.

Medical devices or instruments that require sterilization or disinfection should be thoroughly cleaned before being exposed to the germicide, and the manufacturer's instructions for the use of the germicide should be followed. Further, it is important that the manufacturer's specifications for compatibility of the medical device with chemical germicides be closely followed. Information on specific label claims of commercial germicides can be obtained by writing to the Disinfectants Branch, Office of Pesticides, Environmental Protection Agency, 401 M Street, SW, Washington, D.C. 20460.

Studies have shown that HIV is inactivated rapidly after being exposed to commonly used chemical germicides at concentrations that are much lower than used in practice (27-30). Embalming fluids are similar to the types of chemical germicides that have been tested and found to completely inactivate HIV. In addition to commercially available chemical germicides, a solution of sodium hypochlorite (household bleach) prepared daily is an inexpensive and effective germicide. Concentrations ranging from approximately 500 ppm (1:100 dilution of household bleach) sodium hypochlorite to 5,000 ppm (1:10 dilution of household bleach) are effective depending on the amount of organic material (e.g., blood, mucus) present on the surface to be cleaned and disinfected. Commercially available chemical germicides may be more compatible with certain medical devices that might be corroded by repeated exposure to sodium hypochlorite, especially to the 1:10 dilution.

Survival of HIV in the Environment

The most extensive study on the survival of HIV after drying involved greatly concentrated HIV samples, i.e., 10 million tissue-culture infectious doses per milliliter (31). This concentration is at least 100,000 times greater than that typically found in the blood or serum of patients with HIV infection. HIV was detectable by tissue-culture techniques 1-3 days after drying, but the rate of inactivation was rapid. Studies performed at CDC have also shown that drying HIV causes a rapid (within several hours) 1-2 log (90%-99%) reduction in HIV concentration. In tissue-culture fluid, cell-free HIV could be detected up to 15 days at room temperature, up to 11 days at 37 C (98.6 F), and up to 1 day if the HIV was cell-associated.

When considered in the context of environmental conditions in health-care facilities, these results do not require any changes in currently recommended sterilization, disinfection, or housekeeping strategies. When medical devices are contaminated with blood or other body fluids, existing recommendations include the cleaning of these instruments, followed by disinfection or sterilization, depending on the type of medical device. These protocols assume "worst-case" conditions of extreme virologic and microbiologic contamination, and whether viruses have been inactivated after drying plays no role in formulating these strategies. Consequently, no changes in published procedures for cleaning, disinfecting, or sterilizing need to be made.

Housekeeping

Environmental surfaces such as walls, floors, and other surfaces are not associated with transmission of infections to patients or health-care workers. Therefore, extraordinary attempts to disinfect or sterilize these environmental surfaces are not necessary. However, cleaning and removal of soil should be done routinely.

Cleaning schedules and methods vary according to the area of the hospital or institution, type of surface to be cleaned, and the amount and type of soil present. Horizontal surfaces (e.g., bedside tables and hard-surfaced flooring) in patient-care areas are usually cleaned on a regular basis, when soiling or spills occur, and when a patient is discharged. Cleaning of walls, blinds, and curtains is recommended only if they are visibly soiled. Disinfectant fogging is an unsatisfactory method of decontaminating air and surfaces and is not recommended.

Disinfectant-detergent formulations registered by EPA can be used for cleaning environmental surfaces, but the actual physical removal of microorganisms by scrubbing is probably at least as important as any antimicrobial effect of the cleaning agent used. Therefore, cost, safety, and acceptability by housekeepers can be the main criteria for selecting any such registered agent. The manufacturers' instructions for appropriate use should be followed.

Cleaning and Decontaminating Spills of Blood or Other Body Fluids

Chemical germicides that are approved for use as "hospital disinfectants" and are tuberculocidal when used at recommended dilutions can be used to decontaminate spills of blood and other body fluids. Strategies for decontaminating spills of blood and other body fluids in a patient-care setting are different than for spills of cultures or other materials in clinical, public health, or research laboratories. In patient-care areas, visible material should first be removed and then the area should be decontaminated. With large spills of cultured or concentrated infectious agents in the laboratory, the contaminated area should be flooded with a liquid germicide before cleaning, then decontaminated with fresh germicidal chemical. In both settings, gloves should be worn during the cleaning and decontaminating procedures.

Laundry

Although soiled linen has been identified as a source of large numbers of certain pathogenic microorganisms, the risk of actual disease transmission is negligible. Rather than rigid procedures and specifications, hygienic and common-sense storage and processing of clean and soiled linen are recommended (26). Soiled linen should be handled as little as possible and with minimum agitation to prevent gross

(อ่านต่อหน้า 453)

Recommendations for Prevention of HIV Transmission in Health-Care Setting

(ต่อจากหน้า 448)

microbial contamination of the air and of persons handling the linen. All soiled linen should be bagged at the location where it was used; it should not be sorted or rinsed in patient-care areas. Linen soiled with blood or body fluids should be placed and transported in bags that prevent leakage. If hot water is used, linen should be washed with detergent in water at least 71 C (160 F) for 25 minutes. If low-temperature (≤ 70 C [158 F]) laundry cycles are used, chemicals suitable for low-temperature washing at proper use concentration should be used.

Infective Waste

There is no epidemiologic evidence to suggest that most hospital waste is any more infective than residential waste. Moreover, there is no epidemiologic evidence that hospital waste has caused disease in the community as a result of improper disposal. Therefore, identifying wastes for which special precautions are indicated is largely a matter of judgment about the relative risk of disease transmission. The most practical approach to the management of infective waste is to identify those wastes with the potential for causing infection during handling and disposal and for which some special precautions appear prudent. Hospital wastes for which special precautions appear prudent include microbiology laboratory waste, pathology waste, and blood specimens or blood products. While any item that has had contact with blood, exudates, or secretions may be potentially infective, it is not usually considered practical or necessary to treat all such waste as infective (23,26). Infective waste, in general, should either be incinerated or should be autoclaved before disposal in a sanitary landfill. Bulk blood, suctioned fluids, excretions, and secretions may be carefully poured down a drain connected to a sanitary sewer. Sanitary sewers may also be used to dispose of other infectious wastes capable of being ground and flushed into the sewer.

Implementation of Recommended Precautions

Employers of health-care workers should ensure that policies exist for:

1. Initial orientation and continuing education and training of all health-care workers—including students and trainees—on the epidemiology, modes of transmission, and prevention of HIV and other blood-borne infections and the need for routine use of universal blood and body-fluid precautions for all patients.
2. Provision of equipment and supplies necessary to minimize the risk of infection with HIV and other blood-borne pathogens.
3. Monitoring adherence to recommended protective measures. When monitoring reveals a failure to follow recommended precautions, counseling, education, and/or re-training should be provided, and, if necessary, appropriate disciplinary action should be considered.

Professional associations and labor organizations, through continuing education efforts, should emphasize the need for health-care workers to follow recommended precautions.

Serologic Testing for HIV Infection

Background

A person is identified as infected with HIV when a sequence of tests, starting with repeated enzyme immunoassays (EIA) and including a Western blot or similar, more specific assay, are repeatedly reactive. Persons infected with HIV usually develop antibody against the virus within 6-12 weeks after infection.

The sensitivity of the currently licensed EIA tests is at least 99% when they are performed under optimal laboratory conditions on serum specimens from persons infected for ≥ 12 weeks. Optimal laboratory conditions include the use of reliable reagents, provision of continuing education of personnel, quality control of procedures, and participation in performance-evaluation programs. Given this performance, the probability of a false-negative test is remote except during the first several

weeks after infection, before detectable antibody is present. The proportion of infected persons with a false-negative test attributed to absence of antibody in the early stages of infection is dependent on both the incidence and prevalence of HIV infection in a population (Table 1).

The specificity of the currently licensed EIA tests is approximately 99% when repeatedly reactive tests are considered. Repeat testing of initially reactive specimens by EIA is required to reduce the likelihood of laboratory error. To increase further the specificity of serologic tests, laboratories must use a supplemental test, most often the Western blot, to validate repeatedly reactive EIA results. Under optimal laboratory conditions, the sensitivity of the Western blot test is comparable to or greater than that of a repeatedly reactive EIA, and the Western blot is highly specific when strict criteria are used to interpret the test results. The testing sequence of a repeatedly reactive EIA and a positive Western blot test is highly predictive of HIV infection, even in a population with a low prevalence of infection (Table 2). If the Western blot test result is indeterminant, the testing sequence is considered equivocal for HIV infection.

TABLE 1. Estimated annual number of patients infected with HIV not detected by HIV-antibody testing in a hypothetical hospital with 10,000 admissions/year*

Beginning prevalence of HIV infection	Annual incidence of HIV infection	Approximate number of HIV-infected patients	Approximate number of HIV-infected patients not detected
5.0%	1.0%	550	17-18
5.0%	0.5%	525	11-12
1.0%	0.2%	110	3-4
1.0%	0.1%	105	2-3
0.1%	0.02%	11	0-1
0.1%	0.01%	11	0-1

*The estimates are based on the following assumptions: 1) the sensitivity of the screening test is 99% (i.e., 99% of HIV-infected persons with antibody will be detected); 2) persons infected with HIV will not develop detectable antibody (seroconvert) until 6 weeks (1.5 months) after infection; 3) new infections occur at an equal rate throughout the year; 4) calculations of the number of HIV-infected persons in the patient population are based on the mid-year prevalence, which is the beginning prevalence plus half the annual incidence of infections.

When this occurs, the Western blot test should be repeated on the same serum sample, and, if still indeterminant, the testing sequence should be repeated on a sample collected 3-6 months later. Use of other supplemental tests may aid in interpreting results on samples that are persistently indeterminant by Western blot.

(อ่านต่อฉบับหน้า)