Anti-inflammatory effect of alpha lipoic acid loaded calcium citrate nanoparticle on human keratinocyte HaCaT cells
Keywords:
Alpha lipoic acid, calcium citrate nanoparticle, anti-inflammationAbstract
Background: Alpha lipoic acid (LA) is potent anti-oxidant and anti-inflammation natural compound. To enhance the efficacy and stability of LA, LA-loaded calcium citrate nanoparticles were developed.
Objective: To investigate the anti-inflammatory effects of LA-loaded calcium citrate nanoparticles (LA-NPs) in HaCaT keratinocytes.
Methods: HaCaT cells were exposed under two inflammation stimuli conditions, lipopolysaccharide (LPS) and Pb(NO3 ) 2 , and then were treated with or without LA and LA-NPs for 24 h. Cell viability and pattern of cell death were evaluated. In addition, the expression levels of inflammatory cytokines including IL-1, IL-6, and TNF- as well as inflammatory mediator COX-2 were determined by real-time polymerase chain reaction.
Results: LA and LA-NPs decreased the percentage of cell death in both LPS and Pb(NO3 ) 2 -induced conditions. In LPS-induced cells, LA and LA-NPs attenuated the fold of gene expression levels in IL-1, IL-6, TNF-, and COX-2. Decreased expression in proinflammatory cytokines, including IL-1 and IL-6, was also observed in Pb(NO3 ) 2 -induced cells.
Conclusion: Our study demonstrated the anti-inflammatory effects of LA and LA-NPs on LPS and Pb(NO3 ) 2 - induced human keratinocytes.
Downloads
References
Suter MM, Schulze K, Bergman W, Welle M, Roosje P, Muller EJ. The keratinocyte in epidermal renewal and defence. Vet Dermatol 2009;20:515-32. https://doi.org/10.1111/j.1365-3164.2009.00819.x
Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 2006;71:1397-421. https://doi.org/10.1016/j.bcp.2006.02.009
Mueller MM. Inflammation in epithelial skin tumours: old stories and new ideas. Eur J Cancer 2006;42:735-44. https://doi.org/10.1016/j.ejca.2006.01.014
Pasparakis M, Haase I, Nestle FO. Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol 2014;14:289-301. https://doi.org/10.1038/nri3646
El Barky AR, Hussein SA, Mohamed TM. The potent antioxidant alpha lipoic acid. J Plant Chem Ecophysiol 2017;2:1016.
Baeeri M, Bahadar H, Rahimifard M, Navaei-Nigjeh M, Khorasani R, Rezvanfar MA, et al. alpha-Lipoic acid prevents senescence, cell cycle arrest, and inflammatory cues in fibroblasts by inhibiting oxidative stress. Pharmacol Res 2019;141:214-23. https://doi.org/10.1016/j.phrs.2019.01.003
Pastore S, Lulli D, Potapovich AI, Fidanza P, Kostyuk VA, Dellambra E, et al. Differential modulation of stress-inflammation responses by plant polyphenols in cultured normal human keratinocytes and immortalized HaCaT cells. J Dermatol Sci 2011;63:104-14. https://doi.org/10.1016/j.jdermsci.2011.04.011
Odabasoglu F, Halici Z, Aygun H, Halici M, Atalay F, Cakir A, et al. alpha-Lipoic acid has anti-inflammatory and anti-oxidative properties: an experimental study in rats with carrageenan-induced acute and cotton pellet-induced chronic inflammations. Br J Nutr 2011;105:31-43.
https://doi.org/10.1017/S0007114510003107
Fayez AM, Zakaria S, Moustafa D. Alpha lipoic acid exerts antioxidant effect via Nrf2/HO-1 pathway activation and suppresses hepatic stellate cells activation induced by methotrexate in rats. Biomed Pharmacother 2018;105:428-33. https://doi.org/10.1016/j.biopha.2018.05.145
Smith AR, Shenvi SV, Widlansky M, Suh JH, Hagen TM. Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress. Curr Med Chem 2004;11:1135-46.
https://doi.org/10.2174/0929867043365387
Koufaki M. Therapeutic applications of lipoic acid: a patent review (2011 - 2014). Expert Opin Ther Pat 2014; 24:993-1005. https://doi.org/10.1517/13543776.2014.937425
Bukkavesa B, Sooklert K, Sereemaspun A. Protective effect of alpha lipoic acid loaded calcium citrate nanoparticle on oxidative stress-induced cellular damage in human epidermal keratinocyte. Chula Med J 2019;63:261-9.
Moura FA, de Andrade KQ, dos Santos JC, Goulart MO. Lipoic Acid: its antioxidant and anti-inflammatory role and clinical applications. Curr Top Med Chem 2015;15:458-83.
https://doi.org/10.2174/1568026615666150114161358
Lin YC, Lai YS, Chou TC. The protective effect of alpha-lipoic Acid in lipopolysaccharide-induced acute lung injury is mediated by heme oxygenase-1. Evid Based Complement Alternat Med 2013;2013:590363.
https://doi.org/10.1155/2013/590363
Yucel G, Zhao Z, El-Battrawy I, Lan H, Lang S, Li X, et al. Lipopolysaccharides induced inflammatory responses and electrophysiological dysfunctions in human-induced pluripotent stem cell derived cardiomyocytes. Sci Rep 2017;7:2935. https://doi.org/10.1038/s41598-017-03147-4
Li S, Xie R, Jiang C, Liu M. Schizandrin A Alleviates LPS-induced injury in human keratinocyte cell hacat through a MicroRNA-127-dependent regulation. Cell Physiol Biochem 2018;49:2229-39.
https://doi.org/10.1159/000493826
Lee JL, Mukhtar H, Bickers DR, Kopelovich L, Athar M. Cyclooxygenases in the skin: pharmacological and toxicological implications. Toxicol Appl Pharmacol 2003;192:294-306.
https://doi.org/10.1016/S0041-008X(03)00301-6
Goraca A, Jozefowicz-Okonkwo G. Protective effects of early treatment with lipoic acid in LPS-induced lung injury in rats. J Physiol Pharmacol 2007;58:541-9.
Goraca A, Piechota A, Huk-Kolega H. Effect of alpha-lipoic acid on LPS-induced oxidative stress in the heart. J Physiol Pharmacol 2009;60:61-8.
Suh SH, Lee KE, Kim IJ, Kim O, Kim CS, Choi JS, et al. Alpha-lipoic acid attenuates
lipopolysaccharideinduced kidney injury. Clin Exp Nephrol 2015;19:82-91. https://doi.org/10.1007/s10157-014-0960-7
Zhang WJ, Wei H, Hagen T, Frei B. Alpha-lipoic acid attenuates LPS-induced inflammatory responses by activating the phosphoinositide 3-kinase/Akt signaling pathway. Proc Nat Acad Sci USA 2007;104:4077-82. https://doi.org/10.1073/pnas.0700305104
Tsai YT, Chang CM, Wang JY, Hou MF, Wang JM, Shiurba R, et al. Function of DNA methyltransferase 3a in lead (Pb(2+) )-induced cyclooxygenase-2 gene. Environ Toxicol 2015;30:1024-32.
https://doi.org/10.1002/tox.21976
Metryka E, Chibowska K, Gutowska I, Falkowska A, Kupnicka P, Barczak K, et al. Lead (Pb) exposure enhances expression of factors associated with inflammation. Int J Mol Sci 2018;19.
https://doi.org/10.3390/ijms19061813
Wang C-Q, Gong M-Q, Wu J-L, Zhuo R-X, Cheng SX. Dual-functionalized calcium carbonate based gene delivery system for efficient gene delivery. RSC Adv 2014;4: 38623-9.
https://doi.org/10.1039/C4RA05468G
Maleki Dizaj S, Barzegar-Jalali M, Zarrintan MH, Adibkia K, Lotfipour F. Calcium carbonate nanoparticles as cancer drug delivery system. Expert Opin Drug Deliv 2015;12:1649-60.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Chulalongkorn Medical Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.