Detection of pathogenic Leptospira spp. by RPA-NALFIA targeting lipL32 gene

Authors

  • Sirawit Jirawannaporn Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand and Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
  • Umaporn Limothai King Chulalongkorn Memorial Hospital, Bangkok, Thailand and Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
  • Sasipha Tachaboon King Chulalongkorn Memorial Hospital, Bangkok, Thailand and Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
  • Patcharakorn Kiatamornrak King Chulalongkorn Memorial Hospital, Bangkok, Thailand and Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
  • Watchadaporn Chaisuriyong King Chulalongkorn Memorial Hospital, Bangkok, Thailand
  • Nattachai Srisawat Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand, King Chulalongkorn Memorial Hospital, Bangkok, Thailand, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand and Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Bangkok, Thailand

Keywords:

Detection, lateral flow, leptospira spp, leptospirosis

Abstract

Background: Lack of available sensitive point-of-care tests is one of the key challenges limiting the early point-of-care diagnosis of leptospirsis. Previously, a Recombinase Polymerase Amplification (RPA) and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 12a (CRISPR/Cas12a) lipL32 detection platform with high sensitivity and specificity was developed. However, its turnaround time is between one and two hours, and two reactions are required.

Objective: To develop the RPA in combination with a nucleic acid lateral flow immunoassay (NALFIA) detection platform to reduce the turnaround time and make it a one-step reaction.

Methods: RPA combined with nucleic acid lateral flow immunoassay (NALFIA) detection platform was designed to detect the lipL32 gene of pathogenic Leptospira spp.

Results: In pure culture, the limit of detection (LOD) for RPA-NALFIA was 105 cells/mL, whereas quantitative polymerase chain reaction (qPCR) and RPA-CRISPR/Cas12a FBDA/LFDA achieved 101 and 102 cell/mL, respectively, and none of the diagnostic tests indicated cross-reactivity with other infectious illnesses. In order to detect leptospirosis in clinical samples, the RPA-NALFIA LOD did not achieve the standard as expected. The further modification of the test to reach acceptable LOD is still needed.

Conclusion: A single-reaction RPA-NALFIA targeting the lipL32 gene was capable of detecting pathogenic Leptospira spp. within an hour without the need for costly laboratory equipment, but improvements are necessary.

Downloads

Download data is not yet available.

References

Costa F, Hagan JE, Calcagno J, Kane M, Torgerson P,Martinez-Silveira MS, et al. Global morbidity andmortality of leptospirosis: A systematic review. PLoSNegl Trop Dis 2015;9:e0003898.

https://doi.org/10.1371/journal.pntd.0003898

Narkkul U, Thaipadungpanit J, Srisawat N, Rudge JW,Thongdee M, Pawarana R, et al. Human, animal, watersource interactions and leptospirosis in Thailand. SciRep 2021;11:3215.

https://doi.org/10.1038/s41598-021-82290-5

Daher Ede F, de Abreu KL, da Silva Junior GB.Leptospirosis-associated acute kidney injury. J BrasNefrol2010;32:400-7.

Fernandes LG, Siqueira GH, Teixeira AR, Silva LP,Figueredo JM, Cosate MR, et al. Leptospira spp.:Novel insights into host-pathogen interactions. VetImmunol Immunopathol 2016;176:50-7.

https://doi.org/10.1016/j.vetimm.2015.12.004

Jirawannaporn S, Limothai U, Tachaboon S, DinhuzenJ, Kiatamornrak P, Chaisuriyong W, et al. Rapid andsensitive point-of-care detection of Leptospira byRPA-CRISPR/Cas12a targeting lipL32. PLoS Negl TropDis2022;16:e0010112. https://doi.org/10.1371/journal.pntd.0010112

Evangelista K, Franco R, Schwab A, Coburn J.Leptospira interrogans Binds to Cadherins. PLoS NeglTrop Dis 2014;8:e2672. https://doi.org/10.1371/journal.pntd.0002672

Schreier S, Triampo W, Doungchawee G, Triampo D,Chadsuthi S. Leptospirosis research: fast, easy andreliable enumeration of mobile leptospires. Biol Res2009; 42:5-12.

https://doi.org/10.4067/S0716-97602009000100001

Smythe LD, Smith IL, Smith GA, Dohnt MF, SymondsML, Barnett LJ, et al. A quantitative PCR (TaqMan)assay for pathogenic Leptospira spp. BMC Infect Dis2002;2:13.

https://doi.org/10.1186/1471-2334-2-13

Li J, Ma B, Fang J, Zhi A, Chen E, Xu Y, et al.Recombinase polymerase amplification (RPA)combined with lateral flow immunoassay for rapiddetection of salmonella in food. Foods 2019;9:27.

https://doi.org/10.3390/foods9010027

Jiang W, Ren Y, Han X, Xue J, Shan T, Chen Z, et al.Recombinase polymerase amplification-lateral flow(RPA-LF) assay combined with immunomagneticseparation for rapid visual detection of Vibrioparahaemolyticus in raw oysters. Anal Bioanal Chem 2020;412:2903-14.

https://doi.org/10.1007/s00216-020-02532-9

Wu L, Ye L, Wang Z, Cui Y, Wang J. Utilization ofrecombinase polymerase amplification combined witha lateral flow strip for detection of Perkinsusbeihaiensis in the oyster Crassostrea hongkongensis.Parasit Vectors 2019;12:360. https://doi.org/10.1186/s13071-019-3624-3

Tubiana S, Mikulski M, Becam J, Lacassin F, Lefèvre P,Gourinat AC, et al. Risk factors and predictors of severeleptospirosis in New Caledonia. PLoS Negl Trop Dis2013;7:e1991.

https://doi.org/10.1371/journal.pntd.0001991

Larrea-Sarmiento A, Stack JP, Alvarez AM, Arif M.Multiplex recombinase polymerase amplificationassay developed using unique genomic regions forrapid on-site detection of genus Clavibacter and C.nebraskensis. Sci Rep 2021;11:12017. https://doi.org/10.1038/s41598-021-91336-7

Munawar MA, Martin F, Toljamo A, Kokko H, OksanenE. RPA-PCR couple: an approach to expedite plantdiagnostics and overcome PCR inhibitors.Biotechniques 2020;69:270-80.

https://doi.org/10.2144/btn-2020-0065

Zou Y, Mason MG, Botella JR. Evaluation andimprovement of isothermal amplification methods forpoint-of-need plant disease diagnostics. PloS One2020;15:e0235216.

https://doi.org/10.1371/journal.pone.0235216

Sharma N, Hoshika S, Hutter D, Bradley KM, BennerSA. Recombinase-based isothermal amplification ofnucleic acids with self-avoiding molecular recognitionsystems (SAMRS). Chembiochem 2014;15:2268-74. https://doi.org/10.1002/cbic.201402250

Galloway RL, Hoffmaster AR. Optimization of LipL32PCR assay for increased sensitivity in diagnosingleptospirosis. Diagn Microbiol Infect Dis 2015;82:199-200.

https://doi.org/10.1016/j.diagmicrobio.2015.03.024

Kersting S, Rausch V, Bier FF, von Nickisch-RosenegkM. Rapid detection of Plasmodium falciparum withisothermal recombinase polymerase amplification andlateral flow analysis. Malaria J 2014;13:99.

https://doi.org/10.1186/1475-2875-13-99

Downloads

Published

2023-04-10

How to Cite

1.
Jirawannaporn S, Limothai U, Tachaboon S, Kiatamornrak P, Chaisuriyong W, Srisawat N. Detection of pathogenic Leptospira spp. by RPA-NALFIA targeting lipL32 gene. Chula Med J [Internet]. 2023 Apr. 10 [cited 2024 Nov. 22];67(2). Available from: https://he05.tci-thaijo.org/index.php/CMJ/article/view/19