Cardiotonic effects of cardiac glycosides from plants of Apocynaceae family
Keywords:
Oleander, oleandrin, neriifolin, sodium pump, ApocynaceaeAbstract
Cardiac glycosides (CGs), such as digoxin, were one of the earliest pharmacological treatments used clinically in the management of heart failure. Plants from the Apocynaceae family which grow indigenously in Asia especially in the tropical and subtropical regions and one of the largest plant families, are producers of CGs. The purpose of this review is to update the research progress of CGs with cardiotonic effects obtained from Apocynaceae family on heart failure. Heart failure increases morbidity and mortality globally. It is manifested by compromised contractility of the heart to pump adequate blood and oxygen to all other parts of the body. CGs bind to Na+/K+-ATPase and inhibit the sodium pump, which is believed the major mechanism of action that contributes to its cardiotonic properties. The mechanisms of action of various CGs, particularly the cardenolides present in Apocynaceae plants are discussed in this article. Besides digoxin, other CGs have the potential to be developed as an alternative or adjunct therapy for the management of heart failure.
Downloads
References
Patel S. Plant-derived cardiac glycosides: Role in heart ailments and cancer management. Biomed Pharmacother 2016;84:1036-41. https://doi.org/10.1016/j.biopha.2016.10.030
Prassas I, Diamandis EP. Novel therapeutic applications of cardiac glycosides. Nat Rev Drug Discov 2008;7:926-35. https://doi.org/10.1038/nrd2682
Chusri S, Siriyong T, Na-Phatthalung P, Voravuthikunchai SP. Synergistic effects of ethnomedicinal plants of Apocynaceae family and antibiotics against clinical isolates of Acinetobacter baumannii. Asian Pac J Trop Med 2014;7:456-61. https://doi.org/10.1016/S1995-7645(14)60074-2
De S, Banerjee S, Babu MN, Lakhmi BM, Babu TMS. Review on cardiac glycosides in cancer research and cancer therapy. Indo Am J Pharm Res 2016;6:5391-400.
Siti HN, Jalil J, Asmadi AY, Kamisah Y. Roles of rutin in cardiac remodeling. J Functional Foods 2020;64:103606. https://doi.org/10.1016/j.jff.2019.103606
McMullen JR, Jennings GL. Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol 2007;34:255-62.
https://doi.org/10.1111/j.1440-1681.2007.04585.x
Wen S, Chen Y, Lu Y, Wang Y, Ding L, Jiang M. Cardenolides from the Apocynaceae family and their anticancer activity. Fitoterapia 2016;112:74-84. https://doi.org/10.1016/j.fitote.2016.04.023
Melero CP, Maderade M, Feliciano AS. A short review on cardiotonic steroids and their aminoguanidine analogues. Molecules 2000;5:51-81. https://doi.org/10.3390/50100051
Fuerstenwerth H. Ouabain - the insulin of the heart. Int J Clin Pract 2010;64:1591-4.
https://doi.org/10.1111/j.1742-1241.2010.02395.x
Poindexter BJ, Feng W, Dasgupta A, Bick RJ. Oleandrin produces changes in intracellular calcium levels in isolated cardiomyocytes: a real-time fluorescence imaging study comparing adult to neonatal cardiomyocytes. J Toxicol Environ Health A 2007;70:568-74. https://doi.org/10.1080/15287390600882408
Randimbivololona F, Rakotomanga N. Inotropic effects of tanghinin and acetyl-tanghinin on guineapig isolated papillary muscle. Arch Int Pharmacodyn Ther 1990;307:83-91.
Roberts DR, Southcott E, Potter JM, Roberts MS, Eddleston E, Buckley NA. Pharmacokinetics of digoxin cross-reacting Pharmacokinetics of digoxin crossreacting substances in patients with acute yellow Oleander (Thevetia peruviana) poisoning, including the effect of activated charcoal. Ther Drug Monit 2006;28:784-92. https://doi.org/10.1097/FTD.0b013e31802bfd69
Ni D, Madden TL, Johansen M, Felix E, Ho DH, Newman RA. Murine pharmacokinetics and metabolism of oleandrin, a cytotoxic component of Nerium oleander. J Exp Ther Oncol 2002;2:278-85.
https://doi.org/10.1046/j.1359-4117.2002.01052.x
Selden R, Smith TW. Ouabain pharmacokinetics in dog and man. Determination by radioimmunoassay. Circulation 1972;45:1176-82. https://doi.org/10.1161/01.CIR.45.6.1176
Brown L, Thomas R. Comparison of the inotropic effects of some 5 alpha-cardenolides on guinea pig left atria. Arzneimittelforschung 1984;34:572-4.
Lam CSP, Voors AA, de Boer RA, Solomon SD, van Veldhuisen DJ. Heart failure with preserved ejection fraction: from mechanisms to therapies. Eur Heart J 2018;39:2780-92.
https://doi.org/10.1093/eurheartj/ehy301
Shattock MJ, Ottolia M, Bers DM, Blaustein MP, Boguslavskyi A, Bossuyt J, et al. Na+/Ca2+ exchange and Na+/K+-ATPase in the heart. J Physiol 2015;593:1361-82. https://doi.org/10.1113/jphysiol.2014.282319
Patel CN, Kumar SP, Modi KM, Soni MN, Modi NR, Pandya HA. Cardiotonic steroids as potential Na+/K+-ATPase inhibitors - a computational study. J Recept Signal Transduct Res 2019;39:226-34.
https://doi.org/10.1080/10799893.2019.1660893
Rhee YH, Moon JH, Jung JY, Oh C, Ahn JC, Chung PS. Effect of photobiomodulation therapy on neuronal injuries by ouabain: the regulation of Na, K-ATPase; Src; and mitogen-activated protein kinase signaling pathway. BMC Neurosci 2019;20:19. https://doi.org/10.1186/s12868-019-0499-3
Xie Z, Kometiani P, Liu J, Li J, Shapiro JI, Askari A. Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cardiac myocytes. J Biol Chem 1999;274:19323-8. https://doi.org/10.1074/jbc.274.27.19323
Tian J, Liu J, Garlid KD, Shapiro JI, Xie Z. Involvement of mitogen-activated protein kinases and reactive oxygen species in the inotropic action of ouabain on cardiac myocytes: A potential role for mitochondrial KATP channels. Mol Cell Biochem 2003;242:181-7. https://doi.org/10.1023/A:1021114501561
Wu J, Li D, Du L, Baldawi M, Gable ME, Askari A, et al. Ouabain prevents pathological cardiac hypertrophy and heart failure through activation of phosphoinositide 3-kinase in mouse. Cell Biosci 2015;5:64. https://doi.org/10.1186/s13578-015-0053-7
Fuerstenwerth H. On the differences between ouabain and digitalis glycosides. Am J Ther 2014;21:35-42. https://doi.org/10.1097/MJT.0b013e318217a609
Noble D. Mechanism of action of therapeutic levels of cardiac glycosides. Cardiovasc Res 1980;14:495-514. https://doi.org/10.1093/cvr/14.9.495
Lüllmann H, Peters T, Prillwitz HH, Ziegler A. Cardiac glycosides with different effects in the heart. Basic Res Cardiol 1984;79:93-101. https://doi.org/10.1007/978-3-642-72376-6_13
Adome RO, Gachihi JW, Onegi B, Tamale J, Apio SO. The cardiotonic effect of the crude ethanolic extract of Nerium oleander in the isolated guinea pig hearts. Afr Health Sci 2003;3:77-82.
Taylor SD. Plant toxicities in horses: A review. Purdue Veterinary Medicine Conference. In: 2017 Annual Report of Purdue Veterinary Medicine Equine Sports Medicine Center. West Lafayette, IN: Purdue University; 2007. p. 80-6.
Nurhanan MY, Siti Syarifah MM, Muhammad Haffiz J, Asiah O, Nor Datiakma MA, Puteri Syafinaz Akma AR, et al. Discovering the anti-ovarian cancer potential of a cardiac glycoside derivative using in vitro, in silico and proteomics approaches. In: Chee BJ, Mohtar M, Krishnasamy G, Mgh K, Jamil M, Adib A, et al., editors. Healing power from nature: Current trends & perspective, Proceedings of the 14th Seminar on Medicinal & Aromatic Plants, 11-12 Oct 2016. p.75-84.
Irie K, Sato T, Tanaka I, Nakajima J, Kawaguchi M, Himi T. Cardiotonic effect of Apocynum venetum L. extracts on isolated guinea pig atrium. J Nat Med 2009;63:111-6.
https://doi.org/10.1007/s11418-008-0296-2
Pirasath S, Arulnithy K. Yellow oleander poisoning in eastern province: An analysis of admission and outcome. Indian J Med Sci 2013;67:178-83. https://doi.org/10.4103/0019-5359.125879
Rajapakse S. Management of yellow oleander poisoning. Clin Toxicol 2009;47:206-12.
https://doi.org/10.1080/15563650902824001
Lechat P, Schmitt H. Interactions between the autonomic nervous system and the cardiovascular effects of ouabain in guinea-pigs. Eur J Pharmacol 1982;78:21-32.
Jortani SA, Helm RA, Valdes ER Jr. Inhibition of Na, K-ATPase by oleandrin and oleandrigenin, and their detection by digoxin immunoassays. Clin Chem 1996; 42: 1654-8.
https://doi.org/10.1093/clinchem/42.10.1654
Botelho AFM, Santos-Miranda A, Joca HC, Mattoso CRS, de Oliveira MS, Pierezan F, et al. Hydroalcoholic extract from Nerium oleander L. (Apocynaceae) elicits arrhythmogenic activity. J Ethnopharmacol 2017;206:170-7. https://doi.org/10.1016/j.jep.2017.05.031
Ørstavik Ø, Manfra O, Andressen KW, Andersen GØ, Skomedal T, Osnes JB, et al. The inotropic effect of the active metabolite of levosimendan, OR-1896, is mediated through inhibition of PDE3 in rat ventricular myocardium. PLoS One 2015;10: e0115547. https://doi.org/10.1371/journal.pone.0115547
Aslani MR, Movassaghi AR, Mohri M, Abbasian A, Zarehpour M. Clinical and pathological aspects of experimental oleander (Nerium oleander) toxicosis in sheep. Vet Res Commun 2004;28:609-19.
https://doi.org/10.1023/B:VERC.0000042870.30142.56
Hong DS, Henary H, Falchook GS, Naing A, Fu S, Moulder S, et al. First-in-human study of pbi-05204, an oleander-derived inhibitor of akt, fgf-2, nf-B
and p70s6k, in patients with advanced solid tumors. Invest New Drugs 2014;32:1204-12.
https://doi.org/10.1007/s10637-014-0127-0
Wasfi I, Zorob O, Alkatheeri N, Alawadhi A. A fatal case of oleandrin poisoning. Forensic Sci Int 2008;179:e31-6. https://doi.org/10.1016/j.forsciint.2008.05.002
Aronson JK. Cardiac glycosides. In: Aronson JK, editor. Meyler's side effects of drugs. 16th ed. Waltham, MA: Elsevier; 2016. p.117-57. https://doi.org/10.1016/B978-0-444-53717-1.00456-X
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Chulalongkorn Medical Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.