Protective effect of alpha lipoic acid loaded calcium citrate nanoparticles on oxidative stress-induced cellular damage in human epidermal keratinocytes

Authors

  • Boonyaras Bukkavesa Police General Hospital, Pathumwan, Bangkok, Thailand
  • Kanidta Sooklert Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
  • Amornpun Sereemaspun Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

Keywords:

Alpha lipoic acid, calcium citrate nanoparticle, cellular damage, oxidative stress

Abstract

Background: Prolonged oxidative stress leads to apoptosis of keratinocytes and, consequently, results in skin cell damage.

Objective: To investigate the in vitro effects of alpha lipoic acid (LA) and lipoic acid loaded calcium citrate nanoparticles (LA loaded CaCitNPs) in terms of cell protection against oxidative stress-induced cellular damage.

Methods: HaCaT cells were preincubated with and without LA and LA loaded CaCitNPs before oxidative stress induction by H2O2. The protective effects of both LA and LA loaded CaCitNPs on HaCaT cells were assessed by the percentage of cell viability, percentage of proliferated cells, type of cell death, and ROS generation. In addition, we evaluated the effect of LA and LA loaded CaCitNPs in regulating expression of the Sirtuin 1 (SIRT1) gene.

Results: Our result has revealed that both LA and LA loaded CaCitNPs have an effect on increasing cell proliferation. H2O2 increases ROS production and decreases SIRT1 expression levels, whereas LA and LA loaded CaCitNPs pretreatment reverses the situation. The treatment with LA loaded CaCitNPs is more effective than LA.

Conclusion: Our study demonstrates the cytoprotective effects of LA and LA loaded CaCitNPs against oxidative stress induced human epidermal keratinocyte damage.

Downloads

Download data is not yet available.

References

Swann G. The skin is the body's largest organ. J Vis Commun Med 2010;33:148-9.

https://doi.org/10.3109/17453054.2010.525439

Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol 2011;9:244-53.

https://doi.org/10.1038/nrmicro2537

Zhao P, Sui BD, Liu N, Lv YJ, Zheng CX, Lu YB, et al. Anti-aging pharmacology in cutaneous wound healing: effects of metformin, resveratrol, and rapamycin by local application. Aging Cell 2017;16:1083-93. https://doi.org/10.1111/acel.12635

Ghosh K, Capell BC. The senescence-associated secretory phenotype: critical effector in skin cancer and aging. J Invest Dermatol 2016;136:2133-9. https://doi.org/10.1016/j.jid.2016.06.621

Makrantonaki E, Zouboulis CC. Molecular mechanisms of skin aging: state of the art. Ann N Y Acad Sci 2007;1119:40-50. https://doi.org/10.1196/annals.1404.027

Landau M. Exogenous factors in skin aging. Curr Probl Dermatol 2007;35:1-13.

https://doi.org/10.1159/000106405

Ding Q, Yang D, Zhang W, Lu Y, Zhang M, Wang L, et al. Antioxidant and anti-aging activities of the polysaccharide TLH-3 from Tricholoma lobayense. Int J Biol Macromol 2016;85:133-40.

https://doi.org/10.1016/j.ijbiomac.2015.12.058

Madduma H Sr, Piao MJ, Kim KC, Cha JW, Han X, Choi YH, et al. Galangin (3,5,7-trihydroxyflavone) shields human keratinocytes from ultraviolet B-induced oxidative stress. Biomol Ther (Seoul) 2015;23:165-73. https://doi.org/10.4062/biomolther.2014.130

Tu PT, Tawata S. Anti-oxidant, anti-aging, and antimelanogenic properties of the essential oils from two varieties of Alpinia zerumbet. Molecules 2015;20:16723-40.

https://doi.org/10.3390/molecules200916723

Briganti S, Picardo M. Antioxidant activity, lipid peroxidation and skin diseases. What's new. J Eur Acad Dermatol Venereol 2003;17:663-9. https://doi.org/10.1046/j.1468-3083.2003.00751.x

Fernando PM, Piao MJ, Hewage SR, Kang HK, Yoo ES, Koh YS, et al. Photo-protective effect of sargachromenol against UVB radiation-induced damage through modulating cellular antioxidant systems and apoptosis in human keratinocytes. Environ Toxicol Pharmacol 2016;43:112-9.

https://doi.org/10.1016/j.etap.2016.02.012

Park G, Sim Y, Lee W, Sung SH, Oh MS. Protection on skin aging mediated by antiapoptosis effects of the water lily (Nymphaea Tetragona Georgi) via reactive oxygen species scavenging in human epidermal keratinocytes. Pharmacology 2016;97:282-93. https://doi.org/10.1159/000444022

Baumann L. How to prevent photoaging? J Invest Dermatol 2005;125:xii-xiii.

https://doi.org/10.1111/j.0022-202X.2005.23810.x

Popoola OK, Marnewick JL, Rautenbach F, Ameer F, Iwuoha EI, Hussein AA. Inhibition of oxidative stress and skin aging-related enzymes by Prenylated Chalcones and other flavonoids from Helichrysum teretifolium. Molecules 2015;20:7143-55. https://doi.org/10.3390/molecules20047143

Baxter RA. Anti-aging properties of resveratrol: review and report of a potent new antioxidant skin care formulation. J Cosmet Dermatol 2008;7:2-7. https://doi.org/10.1111/j.1473-2165.2008.00354.x

Tibullo D, Li VG, Giallongo C, Grasso S, Tomassoni D, Anfuso CD, et al. Biochemical and clinical relevance of alpha lipoic acid: antioxidant and anti-inflammatory activity, molecular pathways and therapeutic potential. Inflamm Res 2017;66:947-59. https://doi.org/10.1007/s00011-017-1079-6

Parente E, Colannino G, Picconi O, Monastra G. Safety of oral alpha-lipoic acid treatment in pregnant women: a retrospective observational study. Eur Rev Med Pharmacol Sci 2017;21:4219-27.

Dörsam B, Fahrer J. The disulfide compound alphalipoic acid and its derivatives: A novel class of anticancer agents targeting mitochondria. Cancer Lett 2016;371:12-9.

https://doi.org/10.1016/j.canlet.2015.11.019

Moura FA, de Andrade KQ, dos Santos JC, Goulart MO. Lipoic acid: its antioxidant and anti-inflammatory role and clinical applications. Curr Top Med Chem 2015;15:458-83.

https://doi.org/10.2174/1568026615666150114161358

Abuyassin B, Badran M, Ayas NT, Laher I. The antioxidant alpha-lipoic acid attenuates intermittent hypoxia-related renal injury in a mouse model of sleep apnea. Sleep 2019;42. pii: zsz066.

https://doi.org/10.1093/sleep/zsz066

Deveci HA, Akyuva Y, Nur G, Naziroglu M. Alpha lipoic acid attenuates hypoxia-induced apoptosis, inflammation and mitochondrial oxidative stress via inhibition of TRPA1 channel in human glioblastoma cell line. Biomed Pharmacother 2019;111:292-304. https://doi.org/10.1016/j.biopha.2018.12.077

Lv C, Maharjan S, Wang Q, Sun Y, Han X, Wang S, et al. alpha-Lipoic acid promotes neurological recovery after ischemic stroke by activating the Nrf2/HO-1 pathway to attenuate oxidative damage. Cell Physiol Biochem 2017;43:1273-87. https://doi.org/10.1159/000481840

Chen WL, Kang CH, Wang SG, Lee HM. alpha-Lipoic acid regulates lipid metabolism through induction of sirtuin 1 (SIRT1) and activation of AMP-activated protein kinase. Diabetologia 2012;55:1824-35.

https://doi.org/10.1007/s00125-012-2530-4

Chong ZZ, Shang YC, Wang S, Maiese K. SIRT1: new avenues of discovery for disorders of oxidative stress. Expert Opin Ther Targets 2012;16:167-78. https://doi.org/10.1517/14728222.2012.648926

Ikuta N, Okamoto H, Furune T, Uekaji Y, Terao K, Uchida R, et al. Bioavailability of an R-alpha-Lipoic acid/gamma-Cyclodextrin complex in healthy volunteers. Int J Mol Sci 2016;17. pii: E949.

https://doi.org/10.3390/ijms17060949

Maleki DS, Barzegar-Jalali M, Zarrintan MH, Adibkia K, Lotfipour F. Calcium carbonate nanoparticles as cancer drug delivery system. Expert Opin Drug Deliv 2015;12:1649-60.

https://doi.org/10.1517/17425247.2015.1049530

Davis GD, Masilamoni JG, Arul V, Kumar MS, Baraneedharan U, Paul SF, et al. Radioprotective effect of DL-alpha-lipoic acid on mice skin fibroblasts. Cell Biol Toxicol 2009;25:331-40.

https://doi.org/10.1007/s10565-008-9087-5

Usta J, Hachem Y, El Rifai O, Bou-Moughlabey Y, Echtay K, Griffiths D, et al. Fragrance chemicals lyral and lilial decrease viability of HaCat cells' by increasing free radical production and lowering intracellular ATP level: protection by antioxidants. Toxicol In Vitro 2013;27:339-48.

https://doi.org/10.1016/j.tiv.2012.08.020

Beitner H. Randomized, placebo-controlled, double blind study on the clinical efficacy of a cream containing 5% alpha-lipoic acid related to photoageing of facial skin. Br J Dermatol 2003;149:841-9.

https://doi.org/10.1046/j.1365-2133.2003.05597.x

Podda M, Rallis M, Traber MG, Packer L, Maibach HI. Kinetic study of cutaneous and subcutaneous distribution following topical application of [7,8-14C] rac-alpha-lipoic acid onto hairless mice. Biochem Pharmacol 1996;52:627-33. https://doi.org/10.1016/0006-2952(96)00337-1

Yoon JJ, Jeong JW, Choi EO, Kim MJ, Hwang-Bo H, Kim HJ, et al. Protective effects of Scutellaria baicalensis Georgi against hydrogen peroxide-induced DNA damage and apoptosis in HaCaT human skin keratinocytes. EXCLI J 2017;16:426-38.

Song IB, Gu H, Han HJ, Lee NY, Cha JY, Son YK, et al. Effects of 7-MEGA(TM) 500 on oxidative stress, inflammation, and skin regeneration in H2O2-treated skin cells. Toxicol Res 2018;34:103-10.

https://doi.org/10.5487/TR.2018.34.2.103

Davalli P, Mitic T, Caporali A, Lauriola A, D'Arca D. ROS, Cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev 2016;2016:3565127.

https://doi.org/10.1155/2016/3565127

Song G, Liu Z, Wang L, Shi R, Chu C, Xiang M, et al. Protective effects of lipoic acid against acrylamideinduced neurotoxicity: involvement of mitochondrial energy metabolism and autophagy. Food Funct 2017;8:4657-67. https://doi.org/10.1039/C7FO01429E

Ikuta N, Sugiyama H, Shimosegawa H, Nakane R, Ishida Y, Uekaji Y, et al. Analysis of the enhanced stability of r(+)-alpha lipoic Acid by the complex formation with cyclodextrins. Int J Mol Sci 2013;14: 3639-55. https://doi.org/10.3390/ijms14023639

Sethuraman V, Janakiraman K, Krishnaswami V, Natesan S, Kandasamy R. pH responsive delivery of lumefantrine with calcium phosphate nanoparticles loaded lipidic cubosomes for the site specific treatment of lung cancer. Chem Phys Lipids 2019 Apr 2. pii: S0009-3084(18)30243-3.

Masouleh MP, Hosseini V, Pourhaghgouy M, Bakht MK. Calcium phosphate nanoparticles cytocompatibility versus cytotoxicity: A serendipitous paradox. Curr Pharm Des 2017;23:2930-51.

https://doi.org/10.2174/1570163814666170321115007

Wang CQ, Gong MQ, Wu JL, Zhuo RX, Cheng SX. Dual-functionalized calcium carbonate based gene delivery system for efficient gene delivery. RSC Advances 2014;4:38623-9.

https://doi.org/10.1039/C4RA05468G

Downloads

Published

2023-08-15

How to Cite

1.
Bukkavesa B, Sooklert K, Sereemaspun A. Protective effect of alpha lipoic acid loaded calcium citrate nanoparticles on oxidative stress-induced cellular damage in human epidermal keratinocytes. Chula Med J [Internet]. 2023 Aug. 15 [cited 2024 Dec. 26];63(4). Available from: https://he05.tci-thaijo.org/index.php/CMJ/article/view/309

Similar Articles

You may also start an advanced similarity search for this article.