Trends of methicillin-resistant Staphylococcus aureus infections among Thai pediatric patients
Keywords:
Antibiotic susceptibility, children, MRSA, resistance, Staphylococcus aureusAbstract
Background: Although reductions in methicillin-resistant Staphylococcus aureus (MRSA) infections have been reported, vancomycin prescription rates remain high. Objective: This study aimed to update trends in pediatric prevalence and antibiotic susceptibilities of MRSA infections.
Methods: This retrospective study analyzed patients aged <15 years who contracted S. aureus infections between 2016 and 2022 at a tertiary-care hospital in Thailand. MRSA was defined as resistance to cefoxitin or oxacillin minimal inhibitory concentration of >4 µg/mL. Patients with MRSA infections and their first isolates were classified into healthcare-associated (HA) or community-associated (CA) MRSA based on surveillance definitions. Antibiotic susceptibilities were tested using the VITEK 2XL automated system and disk diffusion method. The annual prevalence of MRSA was estimated and compared using the chi-square test for trend.
Results: Among 1,059 children with S. aureus infections, MRSA was identified in 82 (7.7%; 95% CI 6.2– 9.6), consisting of 65 HA-MRSA and 17 CA-MRSA infections. MRSA prevalence exhibited a significantly downward trend (P = 0.003). MRSA isolates were fully susceptible to vancomycin, linezolid, and tigecycline, with high susceptibilities to fosfomycin and fusidic acid (> 90.0%), lower to trimethoprim-sulfamethoxazole (77.0%) and tetracycline (48.0%), and the least to clindamycin (18.0%).
Conclusion: A declining trend and low prevalence of MRSA infections were observed among pediatric patients, justifying the cautious use of vancomycin as empirical therapy for patients without MRSA risk. MRSA isolates remained highly susceptible to most current antibiotics, which further supports the effectiveness of these treatments against MRSA infections.
Downloads
References
Al-Masri MY, Abu-Hasan NS. Staphylococcus aureus carriage and contamination of mobile phones among students of An-Najah National University in Pales tine. Chula Med J 2020;64:247-57.
https://doi.org/10.58837/CHULA.CMJ.64.3.4
Diekema DJ, Pfaller MA, Shortridge D, Zervos M, Jones RN. Twenty-year trends in antimicrobial susceptibilities among Staphylococcus aureus from the SENTRY antimicrobial surveillance program. Open Forum Infect Dis 2019;6 Suppl 1:S47-53.
https://doi.org/10.1093/ofid/ofy270
Hu FP, Guo Y, Zhu DM, Wang F, Jiang XF, Xu YC, et al. Resistance trends among clinical isolates in China reported from CHINET surveillance of bacterial resistance, 2005-2014. Clin Microbiol Infect 2016;22 Suppl 1:S9-14.
Chaiwarith R, Pacharasupal P, Sirisanthana T. Epide miology, clinical characteristics and treatment outcomes of healthcare-associated methicillin-resistant Staphylococcus aureus bloodstream infections at Chiang Mai University Hospital: a retrospective study. Southeast Asian J Trop Med Public Health 2014;45:897-905.
Krasaewes K, Yasri S, Khamnoi P, Chaiwarith R. Epidemiology of methicillin-resistant Staphylococcus aureus bloodstream infection at Maharaj Nakorn Chiang Mai Hospital, Chiang Mai University, ChiangMai, Thailand (2013-2017). Southeast Asian J Trop Med Public Health 2022;53:91-107.
Phokhaphan P, Tingpej P, Apisarnthanarak A, Kondo S. Prevalence and antibiotic susceptibility of methicillin-resistant Staphylococcus aureus, collected at Thammasat University Hospital, Thailand, August 2012 - July 2015. Southeast Asian J Trop Med Public Health 2017;48:351-9.
Waitayangkoon P, Thongkam A, Benjamungkalarak T, Rachayon M, Thongthaisin A, Chatsuwan T, et al. Hospital epidemiology and antimicrobial susceptibility of isolated methicillin-resistant Staphylococcus aureus: a one-year retrospective study at a tertiary-care center in Thailand. Pathog Glob Health 2020; 114:212-7.
https://doi.org/10.1080/20477724.2020.1755550
Jaganath D, Jorakate P, Makprasert S, Sangwichian O, Akarachotpong T, Thamthitiwat S, et al. Staphylococcus aureus bacteremia incidence and methicillin resistance in rural Thailand, 2006-2014. Am J Trop Med Hyg 2018;99:155-63.
https://doi.org/10.4269/ajtmh.17-0631
Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis2011;52:e18-55.
https://doi.org/10.1093/cid/ciq146
Brown NM, Goodman AL, Horner C, Jenkins A, Brown EM. Treatment of methicillin-resistant Staphylococcus aureus (MRSA): updated guidelines from the UK. JAC Antimicrob Resist 2021;3:dlaa114.
https://doi.org/10.1093/jacamr/dlaa114
Chautrakarn S, Anugulruengkitt S, Puthanakit T, Rattananupong T, Hiransuthikul N. Impact of a prospective audit and feedback antimicrobial steward ship program in pediatric units in tertiary care teaching hospital in Thailand. Hosp Pediatr 2019;9:851-58.
https://doi.org/10.1542/hpeds.2019-0027
Basu S, Copana R, Morales R, Jr, Anugulruengkitt S, Puthanakit T, Maramba-Lazarte C, et al. Keeping It Real: Antibiotic use problems and stewardship solutions in low- and middle-income countries. Pediatr Infect Dis J 2022;41:S18-25.
https://doi.org/10.1097/INF.0000000000003321
Kaplan SL, Hulten KG, Gonzalez BE, Hammerman WA, Lamberth L, Versalovic J, et al. Three-year surveillance of community-acquired Staphylococcus aureus infections in children. Clin Infect Dis 2005;40:1785-91.
https://doi.org/10.1086/430312
Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 2008;36:309-32.
https://doi.org/10.1016/j.ajic.2008.03.002
Buetti N, Marschall J, Drees M, Fakih MG, Hadaway L, Maragakis LL, et al. Strategies to prevent central lineassociated bloodstream infections in acute-care hospitals: 2022 Update. Infect Control Hosp Epidemiol2022;43:553-69.
https://doi.org/10.1017/ice.2022.87
Spalding MC, Cripps MW, Minshall CT. Ventilatorassociated pneumonia: new definitions. Crit Care Clin 2017;33:277-92.
https://doi.org/10.1016/j.ccc.2016.12.009
Anderson DJ. Surgical site infections. Infect Dis Clin North Am 2011;25:135-53.
https://doi.org/10.1016/j.idc.2010.11.004
Kimberlin DW, Barnett ED, Lynfield R, Sawyer MH. Staphylococcus aureus. In: Kimberlin DW, Barnett ED, Lynfield R, Sawyer MH, editors. Red Book: 2021-2024 report of the committee on infectious diseases. 32nd ed. Itasca, IL: American Academy of Pediatrics; 2021. p. 678-92.
https://doi.org/10.1542/9781610025225
Clinical and Laboratory Standards Institute (CLSI). Table 2C. Zone diameter and MIC breakpoints for Staphylococcus spp. In: Clinical and Laboratory Standards Institute , editors. Performance standards for antimicrobial susceptibility testing. 33rd ed. CLSI supplement M100. Berwyn, PA: Clinical and laboratory standards institute; 2023. p.94-104.
Chew CH, Yeo CC, Che Hamzah AM, Al-Trad EI, Jones SU, Chua KH, et al. Multidrug-resistant methicillinresistant Staphylococcus aureus associated with hospitalized newborn infants. Diagnostics (Basel)2023;13:1050.
https://doi.org/10.3390/diagnostics13061050
Masim ML, Argimón S, Espiritu HO, Magbanua MA, Lagrada ML, Olorosa AM, et al. Genomic surveillance of methicillin-resistant Staphylococcus aureus in the Philippines, 2013-2014. Western Pac Surveill Response J 2021;12:6-16.
https://doi.org/10.5365/wpsar.2020.11.1.004
Chen YH, Huang KA, Huang YC, Chi H, Lu CY, Chang LY, et al. Prevalence and molecular characterizations of Staphylococcus aureus nasal colonization among patients in pediatric intensive care units in Taiwan. Antimicrob Resist Infect Control 2020;9:41.
https://doi.org/10.1186/s13756-020-0700-6
Borg MA, Camilleri L. What is driving the epidemiology of methicillin-resistant Staphylococcus aureus infections in Europe? Microb Drug Resist 2021;27:889-94.
https://doi.org/10.1089/mdr.2020.0259
Coia JE, Wilson JA, Bak A, Marsden GL, Shimonovich M, Loveday HP, et al. Joint healthcare infection society (HIS) and infection prevention society (IPS) guidelines for the prevention and control of methicillin-resistant Staphylococcus aureus (MRSA) in healthcare facilities. J Hosp Infect 2021;118S:S1-39.
https://doi.org/10.1016/j.jhin.2021.09.022
Siegel JD, Rhinehart E, Jackson M, Chiarello L. Management of multidrug-resistant organisms in healthcare settings, 2006. Am J Infect Control 2007;35 (10 Suppl 2):S165-93.
https://doi.org/10.1016/j.ajic.2007.10.006
Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, et al. Methicillinresistant Staphylococcus aureus. Nat Rev Primers 2018;4:18033.
https://doi.org/10.1038/nrdp.2018.33
Rolain JM, Abat C, Brouqui P, Raoult D. Worldwide decrease in methicillin-resistant Staphylococcus aureus: do we understand something? Clin Microbiol Infect 2015;21:515-7.
https://doi.org/10.1016/j.cmi.2015.04.017
Wong JW, Ip M, Tang A, Wei VW, Wong SY, Riley S, et al. Prevalence and risk factors of community-associated methicillin-resistant Staphylococcus aureus carriage in Asia-Pacific region from 2000 to 2016: a systematic review and meta-analysis. Clin Epidemiol 2018;10:1489-501.
https://doi.org/10.2147/CLEP.S160595
Immergluck LC, Leong T, Malhotra K, Parker TC, Ali F, Jerris RC, et al. Geographic surveillance of community-associated MRSA infections in children using electronic health record data. BMC Infect Dis 2019;19:170.
https://doi.org/10.1186/s12879-019-3682-3
Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 2009;7:629-41.
https://doi.org/10.1038/nrmicro2200
Chen CJ, Huang YC. New epidemiology of Staphylococcus aureus infection in Asia. Clin Microbiol Infect 2014;20:605-23.
https://doi.org/10.1111/1469-0691.12705
Gardete S, Tomasz A. Mechanisms of vancomycin resistance in Staphylococcus aureus. J Clin Invest 2014;124:2836-40.
https://doi.org/10.1172/JCI68834
Williams PC. Potential of fosfomycin in treating multidrug-resistant infections in children. J Paediatr Child Health 2020;56:864-72.
https://doi.org/10.1111/jpc.14883
Dobie D, Gray J. Fusidic acid resistance in Staphylococcus aureus. Arch Dis Child 2004;89:74-7.
https://doi.org/10.1136/adc.2003.019695
Naimi TS, LeDell KH, Como-Sabetti K, Borchardt SM, Boxrud DJ, Etienne J, et al. Comparison of communityand health care-associated methicillin-resistant Staphylococcus aureus infection. JAMA 2003;290: 2976-84.
https://doi.org/10.1001/jama.290.22.2976
Stefani S, Goglio A. Methicillin-resistant Staphylococcus aureus: related infections and antibiotic resistance. Int J Infect Dis 2010;14 Suppl 4:S19-22.
https://doi.org/10.1016/j.ijid.2010.05.009
Hryniewicz MM, Garbacz K. Borderline oxacillinresistant Staphylococcus aureus (BORSA) - a more common problem than expected? J Med Microbiol 2017;66:1367-73.
https://doi.org/10.1099/jmm.0.000585
Anukool U, O'Neill CE, Butr-Indr B, Hawkey PM, Gaze WH, Wellington EM. Meticillin-resistant Staphylococcus aureus in pigs from Thailand. Int J Antimicrob Agents 2011;38:86-7.
https://doi.org/10.1016/j.ijantimicag.2011.02.018
Anukool U. Community- and livestock-associated methicillin-resistant Staphylococcus aureus: a silent threat to Thai public health. J Assoc Med Sci 2013;46:187.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Chulalongkorn Medical Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.