Bioprinting: revolutionizing biology with 3D innovation
Keywords:
Bioinks, biomedical, personalized medicine, regenerative medicine, three-dimensional bioprinting, tissue engineeringAbstract
Three-dimensional (3D) bioprinting is an innovative technology that enables the fabrication of bioengineered structures through computer-guided processes. It has been in use for over 35 years, contributing hugely to biomedicine. Utilizing biomaterials with regenerative properties has significantly impacted tissue engineering, regenerative medicine, and pharmaceutical research. Various bioprinting techniques, including inkjet, extrusion, laser-assisted, and stereolithography, offer unique advantages for precise tissue construction. The “bioinks” used for such printing can be derived from natural sources or synthesized; the ink ensures biocompatibility, mechanical integration, and controlled degradation. Advanced bioinks—such as nanoengineered, biomolecular, multimaterial, self-assembling, and stimuli-responsive variants—enhance applicability in tissue regeneration. Bioprinting is widely employed, including for organ fabrication, cancer detection, and in food technology. However, its efficiency is limited by challenges like cell positioning and nozzle clogging. Techniques such as pollen-based bioinks and the Freefrom Reversible Embedding of Suspended Hydrogels help address these issues by improving precision and structural stability. This review summarizes the types of 3D printing, their applications in medicine and industry, as well as their advantages and limitations. Owing to ongoing and achieved advancements, the potential uses of bioprinting continue to expand in personalized medicine, organ transplantation, and sustainable food production.
Downloads
References
Deepika B, Gopikrishna A, Girigoswami A, Banu MN, Girigoswami K. Applications of nanoscaffolds in tissue engineering. Curr Pharmacol Rep 2022;8:171-87.
https://doi.org/10.1007/s40495-022-00284-x
Gowtham P, Pallavi P, Harini K, Girigoswami K, Girigoswami A. Hydrogelated virus nanoparticles in tissue engineering. Curr Nanosci 2023;19:258-69.
https://doi.org/10.2174/1573413718666220520094933
Wu DT, Munguia-Lopez JG, Cho YW, Ma X, Song V, Zhu Z, et al. Polymeric scaffolds for dental, oral, and craniofacial regenerative medicine. Molecules 2021;26:7043.
https://doi.org/10.3390/molecules26227043
Girigoswami K, Saini D, Girigoswami A. Extracellular matrix remodeling and development of cancer. Stem Cell Rev Rep 2021;17:739-47.
https://doi.org/10.1007/s12015-020-10070-1
Girigoswami K, Srinivasan ND, Girigoswami A. Fate of stem cells grown on the extracellular matrix isolated from cancer cells and their possible applications in tissue engineering. Current Sci 2021;120:1616.
https://doi.org/10.18520/cs/v120/i10/1616-1622
Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med 2014;6:265sr6.
https://doi.org/10.1126/scitranslmed.3009337
Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 2016;76:321-43.
https://doi.org/10.1016/j.biomaterials.2015.10.076
Narayan S. Biopolymer-based nanocarriers for stem cells or stem cell differentiating agents and their therapeutic significance. In: Chakraborti S, editor. Handbook of oxidative stress in cancer: therapeutic aspects. Singapore: Springer; 2022. p. 2207-26.
https://doi.org/10.1007/978-981-16-5422-0_108
Vanaei S, Parizi M, Salemizadehparizi F, Vanaei H. An overview on materials and techniques in 3D bioprinting toward biomedical application. Eng Regen 2021;2:1-18.
https://doi.org/10.1016/j.engreg.2020.12.001
Kaèareviæ ŽP, Rider PM, Alkildani S, Retnasingh S, Smeets R, Jung O, et al. An introduction to 3D bioprinting: possibilities, challenges and future aspects. Materials (Basel) 2018;11:2199.
https://doi.org/10.3390/ma11112199
Ilango S, Ramachandran A, Kadandale S, Vishwanath S. 3d printing in endodontics. Chennai, Tamil Nadu:Technoarete Publishers; 2022
https://doi.org/10.36647/ETOHSD/2022.01.B1.Ch007
Arumugam P, Kaarthikeyan G, Eswaramoorthy R. ThreeDimensional bioprinting: the ultimate pinnacle of tissue engineering. Cureus 2024;16:e58029.
https://doi.org/10.7759/cureus.58029
Cui X, Boland T, D'Lima DD, Lotz MK. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 2012;6:149-55.
https://doi.org/10.2174/187221112800672949
Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng 2015;9:4.
https://doi.org/10.1186/s13036-015-0001-4
Catros S, Fricain JC, Guillotin B, Pippenger B, Bareille R, Remy M, et al. Laser assisted bioprinting for creating on demand patterns of human osteoprogenitor cells and nano hydroxyapatite. Biofabrication 2011;3:025001.
https://doi.org/10.1088/1758-5082/3/2/025001
Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim K. A simple and high-resolution stereolithographybased 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 2015;7:045009.
https://doi.org/10.1088/1758-5090/7/4/045009
Banerjee D, Singh YP, Datta P, Ozbolat V, O'Donnell A, Yeo M, et al. Strategies for 3D bioprinting of spheroids: a comprehensive review. Biomaterials 2022;291:121881.
https://doi.org/10.1016/j.biomaterials.2022.121881
Mobaraki M, Ghaffari M, Yazdanpanah A, Luo Y, Mills DK. Bioinks and bioprinting: A focused review. Bioprinting 2020;18:e00080.
https://doi.org/10.1016/j.bprint.2020.e00080
Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci 2018;6:915-46.
https://doi.org/10.1039/C7BM00765E
Muthukrishnan L. Imminent antimicrobial bioink deploying cellulose, alginate, EPS and synthetic polymers for 3D bioprinting of tissue constructs. Carbohydr Polym 2021;260:117774.
https://doi.org/10.1016/j.carbpol.2021.117774
Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv 2016;34:422-34.
https://doi.org/10.1016/j.biotechadv.2015.12.011
Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 2014;5:3935.
https://doi.org/10.1038/ncomms4935
Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 2014;32:773-85.
https://doi.org/10.1038/nbt.2958
Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci U S A 2016;113:3179-84.
https://doi.org/10.1073/pnas.1521342113
Izadifar M, Chapman D, Babyn P, Chen X, Kelly ME. UV-Assisted 3D bioprinting of nanoreinforced hybrid cardiac patch for myocardial tissue engineering. Tissue Eng Part C Methods 2018;24:74-88.
https://doi.org/10.1089/ten.tec.2017.0346
Valentine AD, Busbee TA, Boley JW, Raney JR, Chortos A, Kotikian A, et al. Hybrid 3D printing of soft electronics. Adv Mater 2017;29:1703817.
https://doi.org/10.1002/adma.201703817
Gonzalez JEA, Wright WJ, Gustinvil R, Celik E. Hybrid direct ink write 3D printing of high-performance composite structures. Rapid Prototyp J 2023;29: 828-36.
https://doi.org/10.1108/RPJ-12-2021-0341
Chimene D, Lennox KK, Kaunas RR, Gaharwar AK. Advanced bioinks for 3D printing: a materials science perspective. Ann Biomed Eng 2016;44:2090-102.
https://doi.org/10.1007/s10439-016-1638-y
Thostenson ET, Ren Z, Chou T-W. Advances in the science and technology of carbon nanotubes and their composites: a review. Compo Sci Technol 2001;61:1899-912.
https://doi.org/10.1016/S0266-3538(01)00094-X
Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagenalginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl 2018;83:195-201.
https://doi.org/10.1016/j.msec.2017.09.002
Ji S, Guvendiren M. Recent advances in bioink design for 3D bioprinting of tissues and organs. Front Bioeng Biotechnol 2017;5:23.
https://doi.org/10.3389/fbioe.2017.00023
Raphael B, Khalil T, Workman VL, Smith A, Brown CP, Streuli C, et al. 3D cell bioprinting of self-assembling peptide-based hydrogels. Mater Lett 2017;190:103-6.
https://doi.org/10.1016/j.matlet.2016.12.127
Gao B, Yang Q, Zhao X, Jin G, Ma Y, Xu F. 4D bioprinting for biomedical applications. Trends Biotechnol 2016;34:746-56.
https://doi.org/10.1016/j.tibtech.2016.03.004
Tripathi S, Mandal SS, Bauri S, Maiti P. 3D bioprinting and its innovative approach for biomedical applications. MedComm (2020) 2022;4:e194.
https://doi.org/10.1002/mco2.194
Shanmugam DK, Anitha SC, Souresh V, Madhavan Y, Sampath S, Catakapatri Venugopal D, et al. Current advancements in the development of bionic organs using regenerative medicine and 3D tissue engineering. Mater Technol 2023;38:2242732.
https://doi.org/10.1080/10667857.2023.2242732
Chang J, Sun X. Laser-induced forward transfer based laser bioprinting in biomedical applications. Front Bioeng Biotechnol 2023;11:1255782.
https://doi.org/10.3389/fbioe.2023.1255782
Joseph J, Deshmukh K, Tung T, Chidambaram K, Khadheer Pasha SK. 3D printing technology of polymer composites and hydrogels for artificial skin tissue implementations. In: Sadasivuni K, Ponnamma D, Rajan M, Ahmed B, Al-Maadeed M, editors. Polymer nanocomposites in biomedical engineering. Cham: Springer; 2019. p. 205-33.
https://doi.org/10.1007/978-3-030-04741-2_7
Choi KY, Ajiteru O, Hong H, Suh YJ, Sultan MT, Lee H, et al. A digital light processing 3D-printed artificial skin model and full-thickness wound models using silk fibroin bioink. Acta Biomater 2023;164:159-74.
https://doi.org/10.1016/j.actbio.2023.04.034
Jariwala SH, Lewis GS, Bushman ZJ, Adair JH, Donahue HJ. 3D printing of personalized artificial bone scaffolds. 3D Print Addit Manuf 2015;2:56-64.
https://doi.org/10.1089/3dp.2015.0001
Feng P, Zhao R, Tang W, Yang F, Tian H, Peng S, et al. Structural and functional adaptive artificial bone: materials, fabrications, and properties. Adv Funct Mater 2023;33:2214726.
https://doi.org/10.1002/adfm.202214726
Bie H, Chen H, Shan L, Tan CY, Al-Furjan MSH, Ramesh S, et al. 3D printing and performance study of porous artificial bone based on HA-ZrO2-PVA composites. Materials (Basel) 2023;16:1107.
https://doi.org/10.3390/ma16031107
Kurian M, Stevens R, McGrath KM. Towards the development of artificial bone grafts: combining synthetic biomineralisation with 3D printing. J Funct Biomater 2019;10:12.
https://doi.org/10.3390/jfb10010012
Farazin A, Zhang C, Gheisizadeh A, Shahbazi A. 3D bio-printing for use as bone replacement tissues: A review of biomedical application. Biomed Eng Adv 2023;5:100075.
https://doi.org/10.1016/j.bea.2023.100075
Samanipour R, Tahmooressi H, Rezaei Nejad H, Hirano M, Shin SR, Hoorfar M. A review on 3D printing functional brain model. Biomicrofluidics. 2022;16: 011501.
https://doi.org/10.1063/5.0074631
Lozano R, Stevens L, Thompson BC, Gilmore KJ, Gorkin R 3rd, Stewart EM, et al. 3D printing of layered brainlike structures using peptide modified gellan gum substrates. Biomaterials 2015;67:264-73.
https://doi.org/10.1016/j.biomaterials.2015.07.022
Song Y, Su X, Firouzian KF, Fang Y, Zhang T, Sun W. Engineering of brain-like tissue constructs via 3D Cellprinting technology. Biofabrication 2020;12:035016.
https://doi.org/10.1088/1758-5090/ab7d76
Ozbek II, Saybasili H, Ulgen KO. Applications of 3D bioprinting technology to brain cells and brain tumor models: special emphasis to glioblastoma. ACS Biomater Sci En 2024;10:2616-35.
https://doi.org/10.1021/acsbiomaterials.3c01569
Espinosa-Hoyos D, Jagielska A, Homan KA, Du H, Busbee T, Anderson DG, et al. Engineered 3D-printed artificial axons. Sci Rep 2018;8:478.
https://doi.org/10.1038/s41598-017-18744-6
Sharon Sofini PS, Mercy DJ, Raghavan V, Isaac JB, Deepika B, Udayakumar S, et al. Evaluation of scarless wound healing through nanohydrogel infused with selected plant extracts. J Drug Deliv Sci Technol 2024; 100:106118.
https://doi.org/10.1016/j.jddst.2024.106118
Jessy Mercy D, Thirumalai A, Udayakumar S, Deepika B, Janani G, Girigoswami A, et al. Enhancing wound healing with nanohydrogel-entrapped plant extracts and nanosilver: an in vitro investigation. Molecules 2024;29:5004.
https://doi.org/10.3390/molecules29215004
Mercy DJ, Girigoswami K, Girigoswami A. Emerging approaches in keloid scar healing: The synergistic role of nanoparticles and phytochemicals. Chem Eng J 2025;522:168048.
https://doi.org/10.1016/j.cej.2025.168048
Li L, Wang Z, Wang K, Fu S, Li D, Wang M, et al. Paintable bioactive extracellular vesicle ink for wound healing. ACS Appl Mater Interfaces 2023;15:25427-36.
https://doi.org/10.1021/acsami.3c03630
Wang Z, Liang X, Wang G, Wang X, Chen Y. Emerging bioprinting for wound healing. Adv Mater 2023;37:e2304738.
https://doi.org/10.1002/adma.202304738
Zhou F, Xin L, Wang S, Chen K, Li D, Wang S, et al. Portable handheld "SkinPen" loaded with biomaterial ink for in situ wound healing. ACS Appl Mater Interfaces 2023;15:27568-85.
https://doi.org/10.1021/acsami.3c02825
Yang Q, Xiao Z, Lv X, Zhang T, Liu H. Fabrication and biomedical applications of heart-on-a-chip. Int J Bioprint 2021;7:370.
https://doi.org/10.18063/ijb.v7i3.370
Kim Y, Kang K, Yoon S, Kim JS, Park SA, Kim WD, et al. Prolongation of liver-specific function for primary hepatocytes maintenance in 3D printed architectures. Organogenesis 2018;14:1-12.
https://doi.org/10.1080/15476278.2018.1423931
Forbes SJ, Gupta S, Dhawan A. Cell therapy for liver disease: from liver transplantation to cell factory. J Hepatol 2015;62 1 Suppl:S157-69.
https://doi.org/10.1016/j.jhep.2015.02.040
Sun L, Wang Y, Zhang S, Yang H, Mao Y. 3D bioprinted liver tissue and disease models: current advances and future perspectives. Biomater Adv 2023;152:213499.
https://doi.org/10.1016/j.bioadv.2023.213499
Wang Y, Wang J, Ji Z, Yan W, Zhao H, Huang W, et al. Application of bioprinting in ophthalmology. Int J Bioprint 2022;8:552.
https://doi.org/10.18063/ijb.v8i2.552
Nowik K, Langwiñska-Woœko E, Skopiñski P, Nowik KE, Szaflik JP. Bionic eye review-An update. J Clin Neurosci 2020;78:8-19.
https://doi.org/10.1016/j.jocn.2020.05.041
Menon A, Vijayavenkataraman S. Novel vision restoration techniques: 3D bioprinting, gene and stem cell therapy, optogenetics, and the bionic eye. Artif Organs 2022;46:1463-74.
https://doi.org/10.1111/aor.14241
Dai B, Zhang L, Zhao C, Bachman H, Becker R, Mai J, et al. Biomimetic apposition compound eye fabricated using microfluidic-assisted 3D printing. Nat Commun 2021;12:6458.
https://doi.org/10.1038/s41467-021-26606-z
Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br dent J 2015;219:521-9.
https://doi.org/10.1038/sj.bdj.2015.914
Jurado CA, Tsujimoto A, Tanaka K, Watanabe H, Fischer NG, Barkmeier WW, et al. 3D printed coping for intraoral evaluation: a clinical report. Quintessence Int 2019;50:534-8.
Joshi A, Choudhury S, Gugulothu SB, Visweswariah SS, Chatterjee K. Strategies to promote vascularization in 3D printed tissue scaffolds: trends and challenges. Biomacromolecules 2022;23:2730-51.
https://doi.org/10.1021/acs.biomac.2c00423
Hann SY, Cui H, Esworthy T, Zhou X, Lee SJ, Plesniak MW, et al. Dual 3D printing for vascularized bone tissue regeneration. Acta Biomater 2021;123:263-74.
https://doi.org/10.1016/j.actbio.2021.01.012
Yan Y, Chen H, Zhang H, Guo C, Yang K, Chen K, et al. Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials 2019;190-191:97-110.
https://doi.org/10.1016/j.biomaterials.2018.10.033
Wu X, Shi W, Liu X, Gu Z. Recent advances in 3Dprinting-based organ-on-a-chip. Eng Med 2024;1:100003.
https://doi.org/10.1016/j.engmed.2024.100003
Carvalho V, Goncalves I, Lage T, Rodrigues RO, Minas G, Teixeira SF, et al. 3D printing techniques and their applications to organ-on-a-chip platforms: a systematic review. Sensors (Basel) 2021;21:3304.
https://doi.org/10.3390/s21093304
Yi H-G, Lee H, Cho DW. 3D printing of organs-on-chips. Bioengineering (Basel) 2017;4:10.
https://doi.org/10.3390/bioengineering4010010
Jain A, Mathur T, Pandian NKR, Selahi A. Chapter 9 - Organ-on-a-chip and 3D printing as preclinical models for medical research and practice. In: Faintuch J, Faintuch S, editors. Precision medicine for investigators, practitioners and providers. Cambridge, MA: Academic Press; 2020. p. 83-95.
https://doi.org/10.1016/B978-0-12-819178-1.00009-5
Shafique H, Karamzadeh V, Kim G, Shen ML, Morocz Y, Sohrabi-Kashani A, et al. High-resolution low-cost LCD 3D printing for microfluidics and organ-on-a-chip devices. Lab Chip 2024;24:2774-90.
https://doi.org/10.1039/D3LC01125A
Girigoswami K, Girigoswami A. Integration of datadriven techniques in nanomedicines to address diagnosis and drug delivery strategy for therapy. Biopharm Drug Dispos 2025. doi: 10.1002/bdd.70016. Epub 2025 Sep 16.
https://doi.org/10.1002/bdd.70016
Altun F, Bayar A, Hamzat AK, Asmatulu R, Ali Z, Asmatulu E. AI-Driven innovations in 3d printing: optimization, automation, and intelligent control. J Manuf Mater Process 2025;9:329.
https://doi.org/10.3390/jmmp9100329
Rojek I, Miko³ajewski D, Dostatni E, Macko M. AIoptimized technological aspects of the material used in 3D printing processes for selected medical applications. Materials (Basel) 2020;13:5437.
https://doi.org/10.3390/ma13235437
Maimbourg G, Houdouin A, Deffieux T, Tanter M, Aubry JF. 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers. Phys Med Biol 2018;63:025026.
https://doi.org/10.1088/1361-6560/aaa037
Castiñeira-Ibáñez S, Tarrazó-Serrano D, Uris A, Rubio C, Minin OV, Minin IV. Cylindrical 3D printed configurable ultrasonic lens for subwavelength focusing enhancement. Sci Rep 2020;10:20279.
https://doi.org/10.1038/s41598-020-77165-0
Choi JR, Kozalak G, di Bari I, Babar Q, Niknam Z, Rasmi Y, et al. In vitro human cancer models for biomedical applications. Cancers (Basel) 2022;14:2284.
https://doi.org/10.3390/cancers14092284
Li W, Liu Z, Tang F, Jiang H, Zhou Z, Hao X, et al. Application of 3D bioprinting in liver diseases. Micromachines (Basel) 2023;14:1648.
https://doi.org/10.3390/mi14081648
Attaran M. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus Horiz 2017;60:677-88.
https://doi.org/10.1016/j.bushor.2017.05.011
Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online 2016;15:115.
https://doi.org/10.1186/s12938-016-0236-4
Djuroviæ S, Lazareviæ D, Mišiæ M, Stojèetoviæ B, Blagojeviæ M, Bioèanin S, editors. 3D printing technologies: process, materials, advantages, disadvantages and application. In: Mitrovic N, Mladenovic G, Mitrovic A, editors. New trends in engineering research 2024: international conference of experimental and numerical investigations and new technologies, CNNTech 2024. Cham: Springer; 2025. p. 353-370.
https://doi.org/10.1007/978-3-031-78635-8_28
Vaz VM, Kumar L. 3D printing as a promising tool in personalized medicine. AAPS PharmSciTech 2021;22:49.
https://doi.org/10.1208/s12249-020-01905-8
Choonara YE, du Toit LC, Kumar P, Kondiah PP, Pillay V. 3D-printing and the effect on medical costs: a new era? Expert Rev Pharmacoecon Outcomes Res 2016;16:23-32.
https://doi.org/10.1586/14737167.2016.1138860
Veeravalli RS, Vejandla B, Savani S, Nelluri A, Peddi NC. Three-dimensional bioprinting in medicine: a comprehensive overview of current progress and challenges faced. Cureus 2023;15:e41624.
https://doi.org/10.7759/cureus.41624
Vijayavenkataraman S. 3D bioprinting: challenges in commercialization and clinical translation. J 3D Print Med 2023;7:3DP8.
https://doi.org/10.2217/3dp-2022-0026
Gillispie GJ, Han A, Uzun-Per M, Fisher J, Mikos AG, Niazi MKK, et al. The influence of printing parameters and cell density on bioink printing outcomes. Tissue Eng Part A 2020;26:1349-58.
https://doi.org/10.1089/ten.tea.2020.0210
Kwon S, Hwang D. Understanding and resolving 3D printing challenges: a systematic literature review. Processes 2025;13:1772.
https://doi.org/10.3390/pr13061772
Minetola P, Galati M. A challenge for enhancing the dimensional accuracy of a low-cost 3D printer by means of self-replicated parts. Addit Manuf 2018;22:256-64.
https://doi.org/10.1016/j.addma.2018.05.028
Zandrini T, Florczak S, Levato R, Ovsianikov A. Breaking the resolution limits of 3D bioprinting: future opportunities and present challenges. Trends Biotechnol 2023;41:604-14.
https://doi.org/10.1016/j.tibtech.2022.10.009
Tan Y, Chu W, Wang P, Li W, Qi J, Xu J, et al. Highthroughput multi-resolution three dimensional laser printing. Phys Scr 2019;94:015501.
https://doi.org/10.1088/1402-4896/aaec99
Schwab A, Levato R, D'Este M, Piluso S, Eglin D, Malda J. Printability and shape fidelity of bioinks in 3D bioprinting. Chem Eev 2020;120:11028-55.
https://doi.org/10.1021/acs.chemrev.0c00084
Munoz-Perez E, Perez-Valle A, Igartua M, SantosVizcaino E, Hernandez RM. High resolution and fidelity 3D printing of Laponite and alginate ink hydrogels for tunable biomedical applications. Biomater Adv 2023;149:213414.
https://doi.org/10.1016/j.bioadv.2023.213414
Aimar A, Palermo A, Innocenti B. The role of 3D printing in medical applications: a state of the art. J Healthc Eng 2019;2019:5340616.
https://doi.org/10.1155/2019/5340616
Ashish K, Ahmad N, Gopinath P, Vinogradov A. Chapter 1 - 3D printing in medicine: current challenges and potential applications. In: Ahmad N, Gopinath P, Dutta R, editors. 3D printing technology in nanomedicine. Amsterdam, Netherlands: Elsevier; 2019. p. 1-22.
https://doi.org/10.1016/B978-0-12-815890-6.00001-3
Paulsen S, Miller J. Tissue vascularization through 3D printing: will technology bring us flow? Dev Dyn 2015;244:629-40.
https://doi.org/10.1002/dvdy.24254
Bandyopadhyay A, Bose S, Narayan R. Translation of 3D printed materials for medical applications. MRS Bull 2022;47:39-48.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Chulalongkorn Medical Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.






