Compelling evidence of viral shedding of SARS-CoV-2 in stool and laboratory safety suggestion for stool examination amid COVID-19 era

Authors

  • Nirin Seatamanoch Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
  • Switt Kongdachalert Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
  • Vivornpun Sanprasert Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
  • Narissara Jariyapan Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
  • Padet Siriyasatien Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
  • Narisa Brownell Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

Keywords:

COVID-19, disinfection, fecal viral shedding, SARS-CoV-2, stool exam, stool specimen, viral shedding

Abstract

COVID-19 pandemic unfolds in December of 2019 as a number of unknown pneumonia cases arose in Wuhan, China. Patients who contracted the disease usually have respiratory symptoms such as cough and dyspnea. With no established treatment and vaccines, the rise in the number of infections has been unrelenting. SARS-CoV-2 transmits via droplets and aerosols. However, evidence has shown that they are infectious through stools as well. There are increasing numbers of reports of virus particles in feces as well as systematic reviews and meta-analysis to identify the extent of viral fecal excretion. The findings posed a very serious threat upon laboratory technicians who perform routine stool examination. In this review, our topics cover the natural history of SARS-CoV-2 infection and gastrointestinal tract, viral shedding in stool, virus survival in the environment, and disinfection for SARS-CoV-2 in stool samples, and laboratory safety suggestion for stool examination in post-COVID-19 outbreak.

Downloads

Download data is not yet available.

References

World Health Organization. Transmission of sars-cov- 2: Implications for infection prevention precautions. Geneva: World Health Organization; 2020

World Health Organization. Coronavirus disease (COVID-19) Situation Report-189. [Internet]. 2020 [cited 2020 Dec 7]. Available from: https://apps.who.int/iris/handle/10665/333588.

Paris C. Supply-Chain Obstacles Led to Last Month's Cut to Pfizer's Covid-19 Vaccine-Rollout Target. The Wallstreet J 2020; 2020 Dec. 3 (col. logistics report).

Nicastri E, D'Abramo A, Faggioni G, De Santis R, Mariano A, Lepore L, et al. Coronavirus disease (COVID-19) in a paucisymptomatic patient: epidemiological and clinical challenge in settings with limited community transmission, Italy, February 2020. Euro Surveill 2020;25:2000230.

https://doi.org/10.2807/1560-7917.ES.2020.25.11.2000230

Jiehao C, Jin X, Daojiong L, Zhi Y, Lei X, Zhenghai Q, et al. A case series of children with 2019 novel coronavirus infection: Clinical and epidemiological features. Clin Infect Dis 2020;71:1547-51.

https://doi.org/10.1093/cid/ciaa198

Zimmermann P, Curtis N. COVID-19 in children, pregnancy and neonates: a review of epidemiologic and clinical features. Pediatr Infect Dis J 2020;39:469-77. https://doi.org/10.1097/INF.0000000000002700

Liu J, Xiao Y, Shen Y, Shi C, Chen Y, Shi P, et al. Detection of SARS-CoV-2 by RT-PCR in anal from patients who have recovered from coronavirus disease 2019. J Med Virol 2020.doi:10.1002/jmv.25875.

https://doi.org/10.1002/jmv.25875

Su L, Ma X, Yu H, Zhang Z, Bian P, Han Y, et al. The different clinical characteristics of corona virus disease cases between children and their families in China - the character of children with COVID-19. Emerg Microbes Infect 2020;9:707-13. https://doi.org/10.1080/22221751.2020.1744483

Zhang W, Du RH, Li B, Zheng XS, Yang XL, Hu B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect 2020;9:386-9.

https://doi.org/10.1080/22221751.2020.1729071

Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020;323:1843-4. https://doi.org/10.1001/jama.2020.3786

Zhang Y, Chen C, Zhu S, Shu C, Wang D, Song J, et al. Isolation of 2019-nCoV from a stool specimen of a laboratoryconfirmed case of the coronavirus disease 2019 (COVID-19). China CDC Weekly 2020;2:123-4.

https://doi.org/10.46234/ccdcw2020.033

Peng L, Liu J, Xu W, Luo Q, Chen D, Lei Z, et al. SARS-CoV-2 can be detected in urine, blood, anal swabs, and oropharyngeal swabs specimens. J Med Virol 2020. doi: 10.1002/jmv.25936.

https://doi.org/10.1002/jmv.25936

Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARSCoV-2. Gastroenterology 2020;158:1831-3.e3. https://doi.org/10.1053/j.gastro.2020.02.055

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395:507-13. https://doi.org/10.1016/S0140-6736(20)30211-7

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323:1061-9.

https://doi.org/10.1001/jama.2020.1585

Gao QY, Chen YX, Fang JY. 2019 Novel coronavirus infection and gastrointestinal tract. J Dig Dis 2020;21:125-6. https://doi.org/10.1111/1751-2980.12851

Lo IL, Lio CF, Cheong HH, Lei CI, Cheong TH, Zhong X, et al. Evaluation of SARS-CoV-2 RNA shedding in clinical specimens and clinical characteristics of 10 patients with COVID-19 in Macau. Int J Biol Sci 2020;16:1698-707. https://doi.org/10.7150/ijbs.45357

Cheung KS, Hung IFN, Chan PPY, Lung KC, Tso E, Liu R, et al. Gastrointestinal manifestations of SARSCoV-2 infection and virus load in fecal samples from a Hong Kong cohort: systematic review and metaanalysis. Gastroenterology 2020;159:81-95. https://doi.org/10.1053/j.gastro.2020.03.065

Wong SH, Lui RN, Sung JJ. Covid-19 and the digestive system. J Gastroenterol Hepatol 2020;35:744-8.

https://doi.org/10.1111/jgh.15047

Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020;382:929-36.

https://doi.org/10.1056/NEJMoa2001191

Wu Y, Guo C, Tang L, Hong Z, Zhou J, Dong X, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol 2020;5:434-5. https://doi.org/10.1016/S2468-1253(20)30083-2

Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367: 1260-3.

https://doi.org/10.1126/science.abb2507

Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 2005;11:875-9.

https://doi.org/10.1038/nm1267

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and Is blocked by a clinically proven protease inhibitor. Cell 2020;181:271-80.e8. https://doi.org/10.1016/j.cell.2020.02.052

Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M, et al. Ace2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 2012;487:477-81.

https://doi.org/10.1038/nature11228

Zhang T, Cui X, Zhao X, Wang J, Zheng J, Zheng G, et al. Detectable SARS-CoV-2 viral RNA in feces of three children during recovery period of COVID-19 pneumonia. J Med Virol 2020;92:909-14.

https://doi.org/10.1002/jmv.25795

Sun M, Guo D, Zhang J, Zhang J, Teng HF, Xia J, et al. Anal swab as a potentially optimal specimen for SARS-CoV-2 detection to evaluate hospital discharge of COVID-19 patients. Future Microbiol 2020;15:1101-7. https://doi.org/10.2217/fmb-2020-0090

Ling Y, Xu SB, Lin YX, Tian D, Zhu ZQ, Dai FH, et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J (Engl) 2020;133:1039-43.

https://doi.org/10.1097/CM9.0000000000000774

Aboubakr HA, Sharafeldin TA, Goyal SM. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: a review. Transbound Emerg Dis 2020. doi: 10.1111/tbed.13707. https://doi.org/10.1111/tbed.13707

Sakurai A, Sasaki T, Kato S, Hayashi M, Tsuzuki SI, Ishihara T, et al. Natural history of asymptomatic SARS-CoV-2 infection. N Engl J Med 2020;383:885-6. https://doi.org/10.1056/NEJMc2013020

Sinonquel P, Roelandt P, Demedts I, Van Gerven L, Vandenbriele C, Wilmer A, et al. Covid-19 and gastrointestinal endoscopy: What should be taken into account? Dig Endosc 2020. doi: 10.1111/den.13706. https://doi.org/10.1111/den.13706

van Doorn AS, Meijer B, Frampton CMA, Barclay ML, de Boer NKH. Systematic review with meta-analysis: SARS-CoV-2 stool testing and the potential for faecal-oral transmission. Aliment Pharmacol Ther 2020;52:1276-88. https://doi.org/10.1111/apt.16036

Tong Y, Bao A, Chen H, Huang J, Lv Z, Feng L, et al. Necessity for detection of SARS-CoV-2 RNA in multiple types of specimens for the discharge of the patients with COVID-19. J Transl Med 2020;18:411.

https://doi.org/10.1186/s12967-020-02580-w

Wu J, Liu J, Li S, Peng Z, Xiao Z, Wang X, et al. Detection and analysis of nucleic acid in various biological samples of COVID-19 patients. Travel Med Infect Dis 2020;37:101673.

https://doi.org/10.1016/j.tmaid.2020.101673

Bassis CM, Moore NM, Lolans K, Seekatz AM, Weinstein RA, Young VB, et al. Comparison of stool versus rectal swab samples and storage conditions on bacterial community profiles. BMC Microbiol 2017;17:78. https://doi.org/10.1186/s12866-017-0983-9

van Kasteren PB, van der Veer B, van den Brink S, Wijsman L, de Jonge J, van den Brandt A, et al. Comparison of seven commercial RT-PCR diagnostic kits for COVID-19. J Clin Virol 2020;128:104412.

https://doi.org/10.1016/j.jcv.2020.104412

In Vitro Diagnostics EUAs [Internet]. 2020 [cited 2020 Dec 7]. Available from: https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19- emergency-use-authorizations-medical-devices/vitrodiagnostics-euas.

Szymczak WA, Goldstein DY, Orner EP, Fecher RA, Yokoda RT, Skalina KA, et al. Utility of Stool PCR for the Diagnosis of COVID-19: Comparison of Two Commercial Platforms. J Clin Microbiol 2020;58: e01369-20. https://doi.org/10.1128/JCM.01369-20

Pinon A, Vialette M. Survival of viruses in water. Intervirology. 2018;61:214-22.

https://doi.org/10.1159/000484899

Flannery J, Rajko-Nenow P, Keaveney S, O'Flaherty V, Doré W. Simulated sunlight inactivation of norovirus and FRNA bacteriophage in seawater. J Appl Microbiol 2013;115:915-22.

https://doi.org/10.1111/jam.12279

Paluszak Z, Lipowski A, Ligocka A. Survival rate of suid herpesvirus (SuHV-1, Aujeszky's disease virus, ADV) in composted sewage sludge. Pol J Vet Sci 2012;15:51-4.

https://doi.org/10.2478/v10181-011-0113-9

Chin AWH, Chu JTS, Perera MRA, Hui KPY, Yen HL, Chan MCW, et al. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 2020;1:e10.

https://doi.org/10.1016/S2666-5247(20)30003-3

Xiao WJ, Wang ML, Wei W, Wang J, Zhao JJ, Yi B, et al. Detection of SARS-CoV and RNA on aerosol samples from SARS-patients admitted to hospital. Zhonghua Liu Xing Bing Xue Za Zhi 2004;25:882-5.

Rabenau HF, Cinatl J, Morgenstern B, Bauer G, Preiser W, Doerr HW. Stability and inactivation of SARS coronavirus. Med Microbiol Immunol 2005;194:1-6. https://doi.org/10.1007/s00430-004-0219-0

Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect 2020;104:246-51.

https://doi.org/10.1016/j.jhin.2020.01.022

Lai MY, Cheng PK, Lim WW. Survival of severe acute respiratory syndrome coronavirus. Clin Infect Dis 2005;41:e67-71. https://doi.org/10.1086/433186

Wang XW, Li JS, Jin M, Zhen B, Kong QX, Song N, et al. Study on the resistance of severe acute respiratory syndrome-associated coronavirus. J Virol Methods 2005;126:171-7.

https://doi.org/10.1016/j.jviromet.2005.02.005

Medema G, Heijnen L, Elsinga G, Italiaander R, Brouwer A. Presence of SARS-Coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands. Environ Sci Technol Lett 2020;7:511-6. https://doi.org/10.1021/acs.estlett.0c00357

Cimolai N. Environmental and decontamination issues for human coronaviruses and their potential surrogates. J Med Virol 2020. https://doi.org/10.1002/jmv.26170

Fischer RJ, Morris DH, van Doremalen N, Sarchette S, Matson MJ, Bushmaker T, et al. Effectiveness of N95 respirator decontamination and reuse against SARSCoV-2 virus. Emerg Infect Dis 2020;26:2253-5.

https://doi.org/10.3201/eid2609.201524

Patterson EI, Prince T, Anderson ER, Casas-Sanchez A, Smith SL, Cansado-Utrilla C, et al. Methods of inactivation of SARS-CoV-2 for downstream biological assays. J Infect Dis 2020;222:1462-7.

https://doi.org/10.1093/infdis/jiaa507

Kumar M, Mazur S, Ork BL, Postnikova E, Hensley LE, Jahrling PB, et al. Inactivation and safety testing of middle east respiratory syndrome coronavirus. J Virol Methods 2015;223:13-8.

https://doi.org/10.1016/j.jviromet.2015.07.002

World Health Organization. Annex G: Use of disinfectants: alcohol and bleach. In: Infection prevention and control of epidemic- and pandemicprone acute respiratory infections in health care. Geneva: WHO; 2014. p. 65-6.

Geller C, Fontanay S, Mourer M, Dibama HM, Regnouf-de-Vains JB, Finance C, et al. Antiseptic properties of two calix[4]arenes derivatives on the human coronavirus 229e. Antiviral Res 2010;88:343-6.

https://doi.org/10.1016/j.antiviral.2010.09.009

Pratelli A. Canine coronavirus inactivation with physical and chemical agents. Vet J 2008;177:71-9.

https://doi.org/10.1016/j.tvjl.2007.03.019

Cimolai N. Environmental and decontamination issues for human coronaviruses and their potential surrogates. J Med Virol 2020. https://doi.org/10.1002/jmv.26170

Pan Y, Long L, Zhang D, Yuan T, Cui S, Yang P, et al. Potential false-negative nucleic acid testing results for severe acute respiratory syndrome coronavirus 2 from thermal inactivation of samples with low viral loads. Clin Chem 2020;66:794-801. https://doi.org/10.1093/clinchem/hvaa091

Heßling M, Hönes K, Vatter P, Lingenfelder C. Ultraviolet irradiation doses for coronavirus inactivation - review and analysis of coronavirus photoinactivation studies. GMS Hyg Infect Control 2020;15:Doc08.

Kitagawa H, Nomura T, Nazmul T, Omori K, Shigemoto N, Sakaguchi T, et al. Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination. Am J Infect Control 2020;S0196-6553:30809-9. https://doi.org/10.1016/j.ajic.2020.08.022

Laboratory identification of parasites of public health concern [Internet]. 2016 [cited 2020 Dec 6]. Available from: https://www.cdc.gov/dpdx/diagnosticprocedures/ stool/specimencoll.html.

Stuart Blacksell MOTM, Research Unit TCS, Centers for, disease control and prevention USoA. Laboratory biosafety guidance related to coronavirus disease (COVID-19). Interim guidance WHO May 2020:1-2.

National Center for Immunization and Respiratory Diseases (NCIRD) DoVD. Interim laboratory biosafety guidelines for handling and processing specimens associated with coronavirus disease 2019 (COVID-19). CDC. 2020; July 18, 2020.

Chosewood L, Wilson D. Biosafety in microbiological and biomedical laboratories [Internet]. 2009 [cited 2020 Aug. 8]. Available from: https://www.cdc.gov/labs/pdf/ CDC-BiosafetyMicrobiologicalBiomedical Laboratories-2009-P.PDF.

Darnell ME, Subbarao K, Feinstone SM, Taylor DR. Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. J Virol Methods 2004;121:85-91.

https://doi.org/10.1016/j.jviromet.2004.06.006

Downloads

Published

2023-07-19

How to Cite

1.
Seatamanoch N, Kongdachalert S, Sanprasert V, Jariyapan N, Siriyasatien P, Brownell N. Compelling evidence of viral shedding of SARS-CoV-2 in stool and laboratory safety suggestion for stool examination amid COVID-19 era. Chula Med J [Internet]. 2023 Jul. 19 [cited 2024 May 20];65(3). Available from: https://he05.tci-thaijo.org/index.php/CMJ/article/view/154