In vitro biocompatibility of novel titanium-based amorphous alloy thin film in human osteoblast-like cells
Keywords:
Titanium-based alloy, biocompatibility, toxicity, calcificationAbstract
Background: Toxic free Ti-based amorphous alloy has the potential to be used in biomedical fields due to its excellent biocompatibility and osseointegration.
Objectives: The purpose of this study was to develop a series of Ti44Zr10Pd10Cu6+ xCo23-xTa7 (x = 0, 4, 8) and examine their biocompatibility, biological properties, and toxicity in osteoblast-like cells.
Methods: Having developed the alloy ingots by induction melting, we used the cast rod as a plasma cathode in a filtered cathodic vacuum arc deposition chamber to coat a 25-nm thin film of amorphous alloy on cover glass slides. These coated cover glass slides were then examined for biocompatibility. The biocompatibility tests in SaOS2 osteoblast-like cells were performed using a methylthiazol tetrazolium assay and alizarin red staining. The medical grade Ti-6Al-4V alloys was studied in parallel as a control material.
Results: There was no statistically significant difference in number of living cells between all novel alloys compared with Ti-6Al-4V thin film. Alizarin red staining showed that all novel alloy thin film had significantly higher percentage area of calcification in comparison with Ti-6Al-4V thin film control (P < 0.05). In terms of calcification size, the Ti44Zr10Pd10Cu10Co19Ta7 and Ti44Zr10Pd10Cu14Co15Ta7 showed significantly greater calcification than the control (P < 0.05) while Ti44Zr10Pd10Cu6Co23Ta7 also demonstrated larger calcification in comparison with control but no statistical significance (P = 0.27).
Conclusion: The results indicated that all investigated Ti-based alloys were found to be non-cytotoxic and support differentiation of osteoblast-like cells.
Downloads
Downloads
Published
Versions
- 2023-11-20 (2)
- 2023-08-15 (1)
How to Cite
Issue
Section
License
Copyright (c) 2023 Chulalongkorn Medical Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.