Antioxidant activity of Caesalpinia sappan heartwood extracts against oxidative stress induced by hydrogen peroxide in MRC-5 cell lines

Authors

  • Aylada Kaenu Faculty of Medicine, Thammasat University, Pathumthani Thailand
  • Supranee Kongkham Faculty of Medicine, Thammasat University, Pathumthani Thailand and Faculty of Allied Health Sciences, Nakhonratchasima College, Nakhonrachasima, Thailand

Keywords:

Antioxidant activity, Caesalpinia sappan, human lung fibroblast MRC-5 cells, hydrogen peroxide

Abstract

Background: Caesalpinia sappan (C. sappan) heartwood extract is a potentially effective antioxidant against oxidative stress. A few studies have been published on cell-based assay, especially in normal human lung fibroblast cells.

Objectives: To investigate how the concentration of ethanol used for extraction influence the antioxidant capacity of C. sappan heartwood extracts of against oxidative stress in human lung fibroblast MRC-5.

Methods: The antioxidant activity of crude extracts of C. sappan heartwood extracts were analyzed by chemi-based assayand cell-based assay (in-vitro lipid peroxidation), catalase (CAT), and superoxide dismutase (SOD) in MRC-5 cells.

Results: The results showed that the antioxidant effect of C. sappan heartwood extracts significantly depended on the percentage concentration of ethanol used for extraction. The crude extract prepared with 75% ethanol had the highest antioxidant effect. This extract had a total phenolic content of 741.8 mg GAE/ g CS extract, and it could reduce activities of CAT and SOD in H2O2-treated MRC-5 cells. The C. sappan extract could also inhibit lipid peroxidation in MRC-5 cells treated with H2O2.

Conclusion: These findings indicate that C. sappan heartwood extracts have a good antioxidative potential to reduce oxidative stress and could be used as a dietary supplement for maintaining health.

Downloads

Download data is not yet available.

References

Owuor ED, Kong AN. Antioxidants and oxidants regulated signal transduction pathways. Biochem Pharmacol 2002;64:765-70.

https://doi.org/10.1016/S0006-2952(02)01137-1

Cachon BF, Firmin S, Verdin A, Ayi-Fanou L, Billet S, Cazier F, et al. Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter (PM (2.5) and PM (>2.5)) collected from Cotonou, Benin. Environ Pollut 2014;185:340-51.

https://doi.org/10.1016/j.envpol.2013.10.026

Klaunig JE, Wang Z, Pu X, Zhou S. Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol Appl Pharmacol 2011;254:86-99.

https://doi.org/10.1016/j.taap.2009.11.028

Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39:44-84.

https://doi.org/10.1016/j.biocel.2006.07.001

Bohr VA. Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radic Biol Med 2002;32: 804-12.

https://doi.org/10.1016/S0891-5849(02)00787-6

Tripathi YB, Chaurasia S, Tripathi E, Upadhyay A, Dubey GP. Bacopa monniera Linn. as an antioxidant: mechanism of action. Indian J Exp Biol 1996;34:523-6.

Galano A, Mazzone G, Alvarez-Diduk R, Marino T, Alvarez-Idaboy JR, Russo N. Food antioxidants: Chemical Insights at the Molecular Level. Annu Rev Food Sci Technol 2016;7:335-52.

https://doi.org/10.1146/annurev-food-041715-033206

Kumar S, Mishra A, Pandey AK. Antioxidant mediated protective effect of Parthenium hysterophorus against oxidative damage using in vitro models. BMC Complement Altern Med 2013;13:120.

https://doi.org/10.1186/1472-6882-13-120

Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Scientific WorldJournal 2013;2013:162750.

https://doi.org/10.1155/2013/162750

Wang YZ, Sun SQ, Zhou YB. Extract of the dried heartwood of Caesalpinia sappan L. attenuates collagen-induced arthritis. J Ethnopharmacol 2011;136:271-8.

https://doi.org/10.1016/j.jep.2011.04.061

Efferth T, Kahl S, Paulus K, Adams M, Rauh R, Boechzelt H, et al. Phytochemistry and pharmacogenomics of natural products derived from traditional Chinese medicine and Chinese materia medica with activity against tumor cells. Mol Cancer Ther 2008;7:152-61.

https://doi.org/10.1158/1535-7163.MCT-07-0073

Badami S, Moorkoth S, Rai SR, Kannan E, Bhojraj S. Antioxidant activity of Caesalpinia sappan heartwood. Biol Pharm Bull 2003;26:1534-7.

https://doi.org/10.1248/bpb.26.1534

Sireeratawong S, Piyabhan P, Singhalak T, Wongkrajang Y, Temsiririrkkul R, Punsrirat J, et al. Toxicity evaluation of sappan wood extract in rats. J Med Assoc Thai 2010;93 Suppl 7:S50-7.

Zhao H, Bai H, Wang Y, Li W, Koike K. A new homoisoflavan from Caesalpinia sappan. J Nat Med 2008;62:325-7.

https://doi.org/10.1007/s11418-008-0231-6

Hwang GS, Kim JY, Chang TS, Jeon SD, So DS, Moon CK. Effects of Brazilin on the phospholipase A2 activity and changes of intracellular free calcium concentration in rat platelets. Arch Pharm Res 1998;21:774-8.

https://doi.org/10.1007/BF02976775

Nirmal NP, Panichayupakaranant P. Antioxidant, antibacterial, and anti-inflammatory activities of standardized brazilin-rich Caesalpinia sappan extract. Pharm Biol 2015;53:1339-43.

https://doi.org/10.3109/13880209.2014.982295

Lee MJ, Lee HS, Kim H, Yi HS, Park SD, Moon HI, et al. Antioxidant properties of benzylchroman derivatives from Caesalpinia sappan L. against oxidative stress evaluated in vitro. J Enzyme Inhib Med Chem 2010; 25:608-14.

https://doi.org/10.3109/14756360903373376

Nirmal NP, Rajput MS, Prasad RG, Ahmad M. Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: a review. Asian Pac J Trop Med 2015;8:421-30.

https://doi.org/10.1016/j.apjtm.2015.05.014

Gamez EJ, Luyengi L, Lee SK, Zhu LF, Zhou BN, Fong HH, et al. Antioxidant flavonoid glycosides from Daphniphyllum calycinum. J Nat Prod 1998;61:706-8.

https://doi.org/10.1021/np9800203

Dewanto V, Wu X, Adom KK, Liu RH. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 2002;50:3010-4.

https://doi.org/10.1021/jf0115589

Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-6.

https://doi.org/10.1016/S0076-6879(84)05016-3

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351-8.

https://doi.org/10.1016/0003-2697(79)90738-3

Wolfe KL, Liu RH. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J Agric Food Chem 2007;55:8896-907.

https://doi.org/10.1021/jf0715166

Liu X, Liu H, Zhai Y, Li Y, Zhu X, Zhang W. Laminarin protects against hydrogen peroxide-induced oxidative damage in MRC-5 cells possibly via regulating NRF2. PeerJ 2017;5:e3642.

https://doi.org/10.7717/peerj.3642

Halliwell B, Cross CE. Oxygen-derived species: their relation to human disease and environmental stress. Environ Health Perspect 1994;102 Suppl 10:5-12.

https://doi.org/10.1289/ehp.94102s105

Hwang HS, Shim JH. Brazilin and Caesalpinia sappan L. extract protect epidermal keratinocytes from oxidative stress by inducing the expression of GPX7. Chin J Nat Med 2018;16:203-9.

https://doi.org/10.1016/S1875-5364(18)30048-7

Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006; 160:1-40.

https://doi.org/10.1016/j.cbi.2005.12.009

Mates JM. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 2000;153:83-104.

https://doi.org/10.1016/S0300-483X(00)00306-1

Erba D, Riso P, Foti P, Frigerio F, Criscuoli F, Testolin G. Black tea extract supplementation decreases oxidative damage in Jurkat T cells. Arch Biochem Biophys 2003; 416:196-201.

https://doi.org/10.1016/S0003-9861(03)00315-1

Radu M, Munteanu MC, Petrache S, Serban AI, Dinu D, Hermenean A, et al. Depletion of intracellular glutathione and increased lipid peroxidation mediate cytotoxicity of hematite nanoparticles in MRC-5 cells. Acta Biochim Pol 2010;57:355-60.

https://doi.org/10.18388/abp.2010_2416

Robaszkiewicz A, Balcerczyk A, Bartosz G. Antioxidative and prooxidative effects of quercetin on A549 cells. Cell Biol Int 2007;31:1245-50.

https://doi.org/10.1016/j.cellbi.2007.04.009

Decker EA. Phenolics: prooxidants or antioxidants? Nutr Rev 1997;55(11 Pt 1):396-8.

https://doi.org/10.1111/j.1753-4887.1997.tb01580.x

Laughton MJ, Halliwell B, Evans PJ, Hoult JR. Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin. Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA. Biochem Pharmacol 1989;38:2859-65.

https://doi.org/10.1016/0006-2952(89)90442-5

Downloads

Published

2025-06-01

How to Cite

1.
Kaenu A, Kongkham S. Antioxidant activity of Caesalpinia sappan heartwood extracts against oxidative stress induced by hydrogen peroxide in MRC-5 cell lines. Chula Med J [internet]. 2025 Jun. 1 [cited 2025 Jul. 12];69(3). available from: https://he05.tci-thaijo.org/index.php/CMJ/article/view/5903