Spatial correlation and hot spot analysis of dengue hemorrhagic fever in Thailand

Authors

  • Panithee Thammawijaya Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health
  • Darin Areechokchai Bureau of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health

Keywords:

Spatial autocorrelation, hot spot, dengue hemorrhagic fever, Thailand

Abstract

Background: Dengue hemorrhagic fever (DHF) is an important public health problem found in all regions of Thailand and there are many cases, including deaths, reported every year. Since several spatial characteristics are determinants of DHF epidemic, objectives of this study are to explore spatial relationship of the disease in the country and to identify areas at high risk of dengue epidemic.
Methods: Spatial autocorrelation analyses were performed using data of provincial DHF incidence of Thailand from the National Notifiable Diseases Surveillance (Report 506) during 2014-2016.
Results: Overall, DHF incidences at provincial level in Thailand had statistically significant spatial correlation in 2014, 2015 and 2016 with Moran’s I coefficients of 0.38, 0.41 and 0.51, respectively. Clusters of DHF epidemic were identified and varied by geographical regions. Among provinces in the most south region, clusters of epidemic were found in all three years including two years with “hot spot”, i.e. aggregation of high incidence provinces. In the central region, hot spot was identified in one of three years. Additionally, there were some provinces outside the hot spots but had high risk of either importing or exporting epidemics from adjacent provinces, based on their statistically significance level.
Conclusion and discussion: Findings of this study indicated that DHF epidemic in Thailand had clear pattern of hot spot in some regions while, in other areas, provinces at high risk of exporting or importing epidemic were also identified. We strongly recommend relevant organizations to consider applying spatial autocorrelation analysis, in addition to conventional methods, to improve provision of appropriate disease control measures.

References

สํานักระบาดวิทยา. สรุปรายงานการเฝ้าระวังโรค ประจำปี 2550- 2559 [อินเทอร์เน็ต]. 2560 [เข้าถึงเมื่อ 10 ม.ค. 2561]. เข้าถึงได้ จาก: http://203.157.15.110/boeeng/annual.php

Arunachalam N, Tana S, Espino F, Kittayapong P, Abeyewickreme W, Wai KT, et al. Eco-bio-social determinants of dengue vector breeding: a multicountry study in urban and periurban Asia. Bull World Health Organ. 2010 Mar; 88(3): 173–84.

Honorio NA, Nogueira RM, Codeco CT, Carvalho MS, Cruz OG, Magalhaes Mde A, et al. Spatial Evaluation and Modeling of Dengue Seroprevalence and Vector Density in Rio de Janeiro, Brazil. PLoS Negl Trop Dis 3(11): e545.

Hu W, Clements A, Williams G, Tong S. Spatial analysis of notified dengue fever infections. Epidemiol Infect. 2011 Mar;139(3):391-9.

Jeefoo P, Tripathi NK, Souris M. Spatio-temporal diffusion pattern and hotspot detection of dengue in Chachoengsao province, Thailand. Int J Environ Res Public Health. 2 0 1 1 Jan; 8(1): 51–74.

กรมควบคุมโรค. แผนยุทธศาสตร์กรมควบคุมโรค ปี 2559-2563 [อินเทอร์เน็ต]. [เข้าถึงเมื่อ 10 ม.ค. 2561]. เข้าถึงได้จาก: http://www.ddc.moph.go.th/file/plan59_63.pdf

กรมควบคุมโรค. แผนยุทธศาสตร์โรคติดต่อนําโดยแมลง ปี 2555-2559 [อินเทอร์เน็ต]. 2557 [เข้าถึงเมื่อ 10 ม.ค. 2561]. เข้าถึงได้จาก: http://www.thaivbd.org/ploads/project/1/__2555_2559.pdf

Hu W, Clements A, Williams G, Tong S. Spatial analysis of notified dengue fever infections. Epidemiol Infect. 2 0 1 1 Mar;139(3):391-9.

Wen TH, Lin NH, Lin CH, King CC, Su MD. Spatial mapping of temporal risk characteristics to improve environmental health risk identification: a case study of a dengue epidemic in Taiwan. Sci Total Environ. 2006 Aug 31;367(2-3):631-40.

Anselin, L. Local indicators of spatial association – LISA. Geographical Analysis. April 1995; 27: 93-115.

Katty C Castillo, Birthe Körbl, Anna Stewart, Javier F Gonzalez, Facundo Poncec. Application of spatial analysis to the examination of dengue fever in Guayaquil, Ecuador. Procedia Environmental Sciences. 2011; 7: 188-93.

Toan do TT, Hu W, Quang Thai P, Hoat LN, Wright P, Martens P. Hot spot detection and spatio-temporal dispersion of dengue fever in Hanoi, Vietnam. Glob Health Action. 2013 Jan 24; 6: 18632. doi: 10.3402/gha.v6i0.18632.

สำนักระบาดวิทยา. สรุปรายงานการเฝ้าระวังโรค ประจำปี 2559 [อินเทอร์เน็ต]. 2560 [เข้าถึงเมื่อ 10 ม.ค. 2561]. เข้าถึงได้จาก: http://203.157.15.110/annual/AESR2016/index.html

Rianthavorn P, Prianantathavorn K, Wuttirattanakowit N, Theamboonlers A, Poovorawan Y. An outbreak of chikungunya in southern Thailand from 2 0 0 8 to 2 0 0 9 caused by African strains with A226V mutation. Int J Infect Dis. 2010 Sep;14 Suppl 3:e161-5.

Vongpunsawad S, Intharasongkroh D, Thongmee T, Poovorawan Y. Seroprevalence of antibodies to dengue and chikungunya viruses in Thailand. PLoS One. 2017;12(6):e0180560. doi: 10.1371/journal.pone.0180560. eCollection 2017.

Downloads

Published

2024-04-27

How to Cite

Thammawijaya, . P., & Areechokchai, D. (2024). Spatial correlation and hot spot analysis of dengue hemorrhagic fever in Thailand. Weekly Epidemiological Surveillance Report, 49(8), 113–120. retrieved from https://he05.tci-thaijo.org/index.php/WESR/article/view/1382

Issue

Section

Original article

Similar Articles

You may also start an advanced similarity search for this article.